1.Effect of Wulao Qisun Prescription on Proliferation and Osteogenic Differentiation of AS Fibroblasts by Regulating Wnt/β-catenin Signaling Pathway
Juanjuan YANG ; Ping CHEN ; Haidong WANG ; Zhendong WANG ; Haolin LI ; Zhimin ZHANG ; Yuping YANG ; Weigang CHENG ; Jin SU ; Jingjing SONG ; Dongsheng LU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):67-73
ObjectiveTo investigate the effect and underlying mechanism of the Wulao Qisun prescription on pathological new bone formation in ankylosing spondylitis (AS). MethodsSynovial fibroblasts were isolated from the hip joints of AS patients and observed under a microscope to assess cell morphology. The cells were identified using immunofluorescence staining. The isolated AS fibroblasts were divided into blank group, low drug-containing serum group, medium drug-containing serum group, high drug-containing serum group, and positive drug group. After drug intervention, cell proliferation was measured using the cell counting kit-8 (CCK-8) assay to observe fibroblast growth and determine the optimal intervention time. Alkaline phosphatase (ALP) activity was measured using the alkaline phosphatase assay. Protein expression of osteocalcin (OCN), osteopontin (OPN), and runt-related transcription factor 2 (Runx2) was detected by Western blot. The mRNA expression levels of Wnt5a, β-catenin, and Dickkopf-1 (DKK-1) were measured by real-time quantitative polymerase chain reaction (Real-time PCR). ResultsCompared with the blank group, each drug-containing serum group of Wulao Qisun prescription and the positive drug group inhibited the proliferation of AS fibroblasts and reduced ALP expression (P<0.01). Compared with the blank group, the low drug-containing serum group of Wulao Qisun prescription downregulated β-catenin mRNA expression (P<0.05). The medium and high drug-containing serum groups and the positive drug group significantly downregulated Wnt5a and β-catenin mRNA expression (P<0.05, P<0.01), with the positive drug group showing the most pronounced effect (P<0.01). The high drug-containing serum group and the positive drug group significantly upregulated DKK-1 mRNA expression (P<0.01). Compared with the blank group, the low drug-containing serum group of Wulao Qisun prescription inhibited the expression of OPN and Runx2 proteins (P<0.05, P<0.01), while the medium and high drug-containing serum groups and the positive drug group inhibited the expression of OCN, OPN, and Runx2 proteins (P<0.05, P<0.01). ConclusionThe Wulao Qisun prescription can inhibit the proliferation and osteogenic differentiation of AS fibroblasts, thereby delaying the formation of pathological new bone in AS. The possible mechanism involves the regulation of Wnt/β-catenin-related gene expression, further inhibiting the transcription of downstream target genes.
2.Effect of Zuogui Wan and Yougui Wan on Mitochondrial Biogenesis in BMSCs Through PGC-1α/PPARγ
Ying YANG ; Xiuzhi FENG ; Yiran CHEN ; Zhimin WANG ; Xian GUO ; Yanling REN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):28-36
ObjectiveBased on the TCM theory of "Yang transforms materials to Qi while Yin constitutes material form", this paper explored the effects of Zuogui Wan and Yougui Wan on the molecular mechanism of mitochondrial biogenesis during the adipogenic differentiation process of rat bone marrow mesenchymal stem cells (BMSCs) by mediating peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and peroxisome proliferators-activated receptor γ (PPARγ), providing theoretical support for the prevention and treatment of postmenopausal osteoporosis (PMOP) using Zuogui Wan and Yougui Wan. MethodsBMSCs were divided into a blank group, Zuogui Wan (ZGW) group, Yougui Wan (YGW) group, and Progynova group. Cell identification was performed using flow cytometry. The growth curves of BMSCs were plotted using the methylthiazolyldiphenyl-tetrazolium bromide (MTT) method, and the effects of Zuogui Wan and Yougui Wan on the proliferation of BMSCs were detected. The Oil red O staining method was used to detect lipid droplet formation. The Western blot method was used to detect the expression of adipogenesis-related factors PPARγ, CCAAT/enharcer-binding protein (C/EBP)α, C/EBPβ, lipoprotein lipase (LPL) protein, brown adipose tissue-related (BAT) proteins PGC-1α, uncoupcing protein 1 (UCP1), PR domdin-containing protein 16 (PRDM16), mitochondrial biogenesis-related PGC-1α, nuclear respiratory factor 1 (Nrf1), nuclear factor E2-related factor 2 (Nrf2), and mitochondrial transcription factor A (TFAM). The expression of adipogenesis-related factors PPARγ, C/EBPα, C/EBPβ, LPL genes, and the copy number of cytochrome B (CytoB mtDNA) gene was detected using real-time polymerase chain reaction (Real-time PCR). Mitochondrial ultrastructure was detected using transmission electron microscopy. ResultsCompared with that in the blank group, the proliferation ability of BMSCs in each treatment group increased continuously as the intervention progressed, and lipid droplets significantly decreased after the drug intervention. The mRNA and protein expression levels of adipogenesis-related factors PPARγ, C/EBPα, C/EBPβ, and LPL were significantly downregulated (P<0.01), while those of the BAT-related factors PGC-1α, UCP1, PRDM16 were significantly upregulated (P<0.01). The number of mitochondria increased, accompanied by reduced swelling. The double membrane and cristae structure were clear, and the internal cristae rupture was reduced. The copy number of CytoB mtDNA in each treatment group was significantly increased (P<0.01). The protein expression levels of mitochondrial biogenesis-related PGC-1α, Nrf1, Nrf2, and TFAM in each treatment group were significantly increased (P<0.01). ConclusionBoth Zuogui Wan and Yougui Wan can prevent and treat PMOP by intervening in mitochondrial biogenesis in BMSCs through PGC-1α/PPARγ.
3.SR9009 combined with indolepropionic acid alleviates inflammation in C2C12 myoblasts through the nuclear factor-kappa B signaling pathway
Huihui JI ; Xu JIANG ; Zhimin ZHANG ; Yunhong XING ; Liangliang WANG ; Na LI ; Yuting SONG ; Xuguang LUO ; Huilin CUI ; Ximei CAO
Chinese Journal of Tissue Engineering Research 2025;29(6):1220-1229
BACKGROUND:Rev-erbα is involved in the regulation of inflammation,but pharmacological activation of Rev-erbα increases the risk for cardiovascular diseases.To reduce the relevant risk,an exploration on SR9009,a Rev-erbα agonist,combined with other drugs to relieve inflammation in skeletal myoblasts was conducted,laying the theoretical foundation for the treatment of inflammation-associated skeletal muscle atrophy. OBJECTIVE:To investigate the relationship of SR9009,indolepropionic acid and nuclear factor-κB signaling pathways in lipopolysaccharide-induced C2C12 myoblasts. METHODS:(1)C2C12 myoblasts were induced to differentiate in the presence of lipopolysaccharide(1 μg/mL).RNA-seq and KEGG pathway analysis were used to study signaling pathways.(2)C2C12 myoblast viability was assessed using the cell counting kit-8 assay to determine optimal concentrations of indolepropionic acid.Subsequently,cells were categorized into control group,lipopolysaccharide(1 μg/mL)group,SR9009(10 μmol/L)+lipopolysaccharide group,indolepropionic acid(80μmol/L)+lipopolysaccharide group,and SR9009+indolepropionic acid+lipopolysaccharide group.ELISA was employed to measure protein expression levels of interleukin-6 in the cultured supernatant.Real-time quantitative PCR were employed to measure mRNA expression levels of interleukin-6,tumor necrosis factor α,TLR4 and CD14.Western blot assay were employed to measure protein expression levels of NF-κB p65 and p-NF-κB p65.(3)After Rev-erbα was knocked down by siRNA,knockdown efficiency was assessed by RT-qPCR.And mRNA levels of interleukin-6 and tumor necrosis factor α were also measured. RESULTS AND CONCLUSION:Compared with the blank control group,lipopolysaccharide time-dependently inhibited myofibroblast fusion to form myotubes,the mRNA expression levels of interleukin-6 and tumor necrosis factor α were elevated,and the level of interleukin-6 in the cell supernatant was significantly increased.The results of KEGG pathway showed that the nuclear factor-κB signaling pathway was activated by lipopolysaccharide.Indolepropionic acid exhibited significant suppression of C2C12 myoblasts viability when its concentration exceeded 80 μmol/L.Indolepropionic acid and SR9009 inhibited the activation of NF-κB signaling pathway,thereby played an anti-inflammatory role,and suppressed the mRNA expression levels of interleukin-6,tumor necrosis factor α,TLR4 and CD14.Compared with the lipopolysaccharide group,the ratio of p-NF-κB p65/NF-κB p65 protein expression were downregulated.SR9009 combined with indolepropionic acid notably reduced lipopolysaccharide-induced inflammation,further downregulated the mRNA expression levels of interleukin-6,tumor necrosis factor α,TLR4 and CD14.The ratio of p-NF-κB p65/NF-κB p65 protein expression was significantly lower than that in the SR9009+lipopolysaccharide group or indolepropionic acid+lipopolysaccharide group.Rev-erbα increases time-dependently with lipopolysaccharide induction.The knockdown efficiency of Rev-erbα by siRNA reached over 58%,and lipopolysaccharide was added after Rev-erbα was successfully knocked down.Compared with the lipopolysaccharide group,the mRNA expression levels of interleukin-6 and tumor necrosis factor α were significantly up-regulated.These results conclude that Rev-erbα may act as a promising pharmacological target to reduce inflammation.SR9009 targeted activation of Rev-erbα combined with indolepropionic acid significantly inhibits the nuclear factor-κB signaling pathway and attenuates the inflammatory response of C2C12 myofibroblasts.Moreover,the combined anti-inflammatory effect is superior to that of the intervention alone.
4.Clinical switching patterns and reasons between bevacizumab biosimilar and originator drugs
Min OU ; Yaqin WANG ; Zhimin ZHU ; Fangfang ZHANG ; Qiongni ZHU
China Pharmacy 2025;36(18):2297-2300
OBJECTIVE To analyze clinical switching patterns and reasons between bevacizumab biosimilar and originator drugs. METHODS The data were collected from 1 175 cancer patients treated with bevacizumab at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine from January 1, 2018, to December 31, 2023. The patients were divided into originator group (n=250) and biosimilar group (n=925). The switching rate, switching type and reasons of the two groups were compared. RESULTS There were no statistically significant differences in the switching rate, switching types, and the number of switches between the two groups (P>0.05). Single, one-way switches were the switching type in both groups. The proportion of patients in the biosimilar group who switched due to adverse events was significantly higher than originator group, while the proportion of patients who switched due to treatment costs was significantly lower than originator group (P<0.05). There were no statistically significant differences in the proportions of patients who switched due to efficacy and drug accessibility between the two groups (P>0.05). CONCLUSIONS The switching between bevacizumab biosimilar and the originator drugs mainly involves single, one- way switches. Treatment costs and drug accessibility are the main factors for the switches among users of originator drugs, while drug accessibility and adverse events are the main factors for the switches among users of biosimilar.
5.Study on the mechanism of Buzhong Yiqi Decoction regulating macrophage polarization in mice with autoimmune thyroiditis
Lanting WANG ; Zhaohan ZHAI ; Shouxin JU ; Liang KONG ; Jie DING ; Yao XIAO ; Yiran CHEN ; Zhimin WANG
Journal of Beijing University of Traditional Chinese Medicine 2025;48(4):529-541
Objective:
To explore the mechanism of Buzhong Yiqi Decoction in modulating macrophage polarization and intervening in autoimmune thyroiditis (AIT) mice.
Methods:
Using the random number table method, 48 SPF-grade NOD.H-2h4 mice were assigned to the normal, model, low-dose (4.10 g/kg), medium-dose (8.19 g/kg), high-dose group (16.38 g/kg) of Buzhong Yiqi Decoction, and selenium yeast tablet (0.026 mg/kg) groups, with eight mice in each group. All groups, except the normal group, were free to drink high iodine water (0.05% sodium iodide) to prepare AIT mouse models for 8 consecutive weeks. After the modeling was complete, each treatment group was orally administered with the corresponding medication, while the normal and model groups were orally administered with an equal volume of distilled water once a day for 8 consecutive weeks. High-performance liquid chromatography with an oscillometric refractive detector was used to analyze the content of Astragaloside Ⅳ in Buzhong Yiqi Decoction. Hematoxylin and eosin staining was used to observe the pathological morphology of mouse thyroid tissue. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of serum thyroid peroxidase antibody (TPO-Ab), thyroglobulin antibody (TgAb), interleukin (IL)-6, IL-10, and tumor necrosis factor-α (TNF-α). An immunofluorescence assay was used to detect the positive area percentage of M1 and M2 macrophages in mouse thyroid tissue. Flow cytometry assay was used to detect macrophage polarization in mouse spleen tissue. Real-time fluorescence quantitative PCR was used to detect the mRNA expression of nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3 (NLRP3), nuclear factor kappa B inhibitory protein α (IκBα), and nuclear factor-κB (NF-κB) p65 in mouse spleen tissue. Western blotting was used to detect the expression of the phosphorylated IκBα (p-IκBα), phosphorylated NF-κB p65 (p-NF-κB p65), and NLRP3 protein in mouse spleen tissue.
Results:
The content of Astragaloside Ⅳ in Buzhong Yiqi Decoction was (7.09±0.06) g/L. Compared to the normal group, significant lymphocyte infiltration was observed in the thyroid tissue of mice in the model group. The levels of serum TPO-Ab, TgAb, IL-6, and TNF-α increased (P<0.05). The positive area percentage of M1 macrophages in thyroid tissue increased (P<0.05). The proportion of M1 macrophages and M1/M2 in spleen tissue increased (P<0.05). The relative expression levels of NF-κB p65 and NLRP3 mRNA in spleen tissue increased (P<0.05). The relative expression of p-IκBα, p-NF-κB p65, and NLRP3 proteins increased (P<0.05). Compared to the model group, the inflammation infiltration degree in the thyroid tissue of mice in each dose group of Buzhong Yiqi Decoction and selenium yeast tablet group was reduced, the serum TPO-Ab, TgAb, IL-6, TNF-α content was decreased, the spleen tissue M1/M2 was reduced, the expression of NF-κB p65 mRNA was reduced, and the relative expression levels of p-IκBα, p-NF-κB p65 protein were reduced (P<0.05). The Buzhong Yiqi Decoction high-dose and selenium yeast tablets groups showed an increase in IL-10 content, an increase in positive area percentage of M2 macrophages in thyroid tissue, an increase in M2 macrophages proportion in spleen tissue, and a decrease in NLRP3 mRNA and protein relative expression levels (P<0.05).
Conclusion
Buzhong Yiqi Decoction may regulate macrophage polarization by inhibiting the NF-κB/NLRP3 signaling pathway, thus improving the inflammatory damage in mice with AIT.
6.Effect of Buzhong Yiqitang on Th17/Treg Immune Imbalance and Notch1 Signaling Pathway in AIT Mice
Zhuo ZHAO ; Nan SONG ; Ziyu LIU ; Pin LI ; Yue LUO ; Pengkun ZHANG ; Zhimin WANG ; Yuanping YIN ; Tianshu GAO ; Zhe JIN ; Xiao YANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(5):19-27
ObjectiveTo explore the effect of Buzhong Yiqitang on the immune imbalance of helper T cell 17 (Th17)/regulatory T cell (Treg) and Notch1 signaling pathway in mice with autoimmune thyroiditis (AIT). MethodA total of 60 8-week-old NOD.H-2h4 mice were randomly divided into the normal group, model group, western medicine group (selenium yeast tablet, 32.5 mg·kg-1), and low-dose (4.78 g·kg-1·d-1), middle-dose (9.56 g·kg-1·d-1), and high-dose (19 g·kg-1·d-1) Buzhong Yiqitang groups, with 10 mice in each group. The normal group was fed with distilled water, and the other groups were fed with water containing 0.05% sodium iodide for eight weeks. After the animal model of AIT was formed spontaneously, the mice were killed under anesthesia after intragastric administration for eight weeks. Serum anti-thyroglobulin antibodies (TGAb), thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), and free thyroid hormone (FT4) were detected by enzyme-linked immunosorbent assay (ELISA), and thyroid tissue changes were observed by hematoxylin-eosin (HE) staining. The mRNA and protein expressions of retinoid-related orphan receptor-γt (RORγt), interleukin (IL)-17, forkhead box P3 (FoxP3), IL-10, Notch1, and hair division-related enhancer 1 (Hes1) in thyroid tissue were detected by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot, respectively. ResultCompared with the normal group, the thyroid structure of the model group was severely damaged, and lymphocytes were infiltrated obviously. The levels of serum TGAb, FT3, and FT4 contents were significantly increased, and TSH content was significantly decreased (P<0.01). The mRNA and protein expression levels of RORγt, IL-17, Notch1, and Hes1 were significantly increased, while those of FoxP3 and IL10 were significantly decreased in the model group (P<0.01). Compared with the model group, thyroid structural damage and lymphocyte infiltration were improved in the treatment groups, and serum TGAb, FT3, and FT4 contents were significantly decreased. TSH content was increased, and mRNA and protein expression levels of RORγt, IL-17, Notch1, and Hes1 were decreased. mRNA and protein expression levels of FoxP3 and IL-10 were increased to different degrees (P<0.05, P<0.01), and the middle-dose Buzhong Yiqitang group had the most significant intervention effect. ConclusionBuzhong Yiqitang can alleviate the thyroid structural damage in AIT mice, and its mechanism may be related to improving the abnormal differentiation of Th17/Treg immune cells and inhibiting the activation of the Notch1 signaling pathway.
7.The regulatory role of the RUS family in plant growth and development.
Yao HU ; Sirui LI ; Xinxin ZHANG ; Qinglin TANG ; Dayong WEI ; Shibing TIAN ; Yang YANG ; Zhimin WANG
Chinese Journal of Biotechnology 2024;40(1):81-93
The chloroplast genome encodes many key proteins involved in photosynthesis and other metabolic processes, and metabolites synthesized in chloroplasts are essential for normal plant growth and development. Root-UVB (ultraviolet radiation B)-sensitive (RUS) family proteins composed of highly conserved DUF647 domain belong to chloroplast proteins. They play an important role in the regulation of various life activities such as plant morphogenesis, material transport and energy metabolism. This article summarizes the recent advances of the RUS family proteins in the growth and development of plants such as embryonic development, photomorphological construction, VB6 homeostasis, auxin transport and anther development, with the aim to facilitate further study of its molecular regulation mechanism in plant growth and development.
Female
;
Pregnancy
;
Humans
;
Ultraviolet Rays
;
Biological Transport
;
Chloroplasts/genetics*
;
Embryonic Development
;
Plant Development/genetics*
8.Regulatory effect of TRPC3 on the biological behavior of retina in OIR mice and human retinal endothelial cells
Yue ZHANG ; Xiaojing LIU ; Yuhan ZHEN ; Yao YAO ; Bin SHAO ; Manhong XU ; Yanhui WANG ; Zhiqiang LIU ; Wei WANG ; Ailing MAO ; Baoyue ZHANG ; Minglian ZHANG ; Zhimin CHEN
Chinese Journal of Experimental Ophthalmology 2024;42(4):331-338
Objective:To investigate the regulatory effect of transient receptor potential cation channel subfamily C member 3 (TRPC3) on the retina in oxygen-induced retinopathy (OIR) mice and biological behavior of human retinal vascular endothelial cells (HREC).Methods:A total of 32 healthy SPF grade 7-day-old C57BL/6 mice were selected and randomly divided into a control group and an OIR group by the random number table method, with 16 mice in each group.The control group received no special treatment, and the OIR model was established in the OIR group.On postnatal day 17 (PN17), the success of the model establishment was verified by immunofluorescence staining of the retinal patch.The in vitro cultured HREC were divided into a normal control group, a transfection reagent group, and a si-TRPC3 group.The normal control group received no special treatment, while the transfection reagent group and the si-TRPC3 group were transfected with transfection reagent or transfection reagent + si-TRPC3.The relative expression of TRPC3 mRNA was detected by real-time quantitative fluorescence PCR.The relative expressions of TRPC3, transcription factor NF-E2 related factor (Nrf2), and superoxide dismutase (SOD) proteins were determined by Western blot.HREC were further divided into a normal control group, a vascular endothelial growth factor (VEGF) group, a si-TRPC3 group, and a Pyr3 (TRPC3 channel inhibitor) group, which were cultured in complete medium, medium containing 20 ng/ml VEGF recombinant protein, medium containing 20 ng/ml VEGF recombinant protein (si-TRPC3 transfection for 72 hours), and medium containing 20 ng/ml VEGF recombinant protein+ 1 μmol/L Pyr3 for 48 hours, respectively.The proliferation ability of HREC was detected using cell counting kit 8 (CCK-8). The horizontal and vertical migration ability of cells were detected by cell scratch assay and transwell assay, respectively.This study followed the 3R principles of animal welfare and was approved by the Ethics Committee of Hebei Eye Hospital (No.2023LW04). Results:Pathological neovascular clusters with strong fluorescent staining appeared in the retina of OIR mice on PN17.The relative expressions of TRPC3 mRNA and protein in the retina of OIR mice were 2.057±0.244 and 1.517±0.290, respectively, significantly higher than 0.983±0.033 and 0.874±0.052 of control group ( t=6.165, 3.094; both at P<0.05). The relative expression levels of TRPC3 mRNA and protein were significantly lower, and the relative expression levels of Nrf2 and SOD proteins were higher in the si-TRPC3 group than in the normal control and transfection reagent groups, and the differences were statistically significant (all at P<0.05). The CCK-8 experiment results showed that the cell absorbance value was higher in the VEGF group than in the normal control group, and lower in the si-TRPC3 and Pyr3 groups than in the VEGF group, with statistically significant differences (all at P<0.05). The results of the cell scratch experiment showed that the lateral migration rate of VEGF group cells was higher than that of normal control group, while the lateral migration rate of si-TRPC3 group and Pyr3 group cells was lower than that of VEGF group, and the differences were statistically significant (all at P<0.05). The transwell experiment results showed that the number of stained cells in the VEGF group was higher than that in the normal control group, and the number of stained cells in the si-TRPC3 group and Pyr3 group was lower than that in the VEGF group, with statistically significant differences (all at P<0.05). Conclusions:Hypoxia induces increased TRPC3 expression in OIR mouse retina, and downregulation of TRPC3 inhibits HREC proliferation and migration.The mechanism is related to the activation of the Nrf2-related oxidative stress pathway.
9.Efficacy,metabolic characteristics,safety and immunogenicity of AK-HER2 compared with reference trastuzumab in patients with metastatic HER2-positive breast cancer:a multicenter,randomized,double-blind phase Ⅲ equivalence trial
Yang LUO ; Tao SUN ; Zhimin SHAO ; Jiuwei CUI ; Yueyin PAN ; Qingyuan ZHANG ; Ying CHENG ; Huiping LI ; Yan YANG ; Changsheng YE ; Guohua YU ; Jingfen WANG ; Yunjiang LIU ; Xinlan LIU ; Yuhong ZHOU ; Yuju BAI ; Yuanting GU ; Xiaojia WANG ; Binghe XU ; Lihua SONG
China Oncology 2024;34(2):161-175
Background and purpose:For patients with human epidermal growth factor receptor 2(HER2)-positive metastatic breast cancer,trastuzumab treatment can prolong the overall survival and significantly improve the prognosis of patients.However,the reference original research trastuzumab(Herceptin?)is more expensive.Biosimilars have comparable efficacy and safety profiles while increasing patient access to treatment.This clinical trial aimed to evaluate the efficacy,pharmacokinetics,safety and immunogenicity of the trastuzumab biosimilar AK-HER2 compared to trastuzumab(Herceptin?)in patients with HER2-positive metastatic breast cancer.Methods:This multi-center,randomised,double-blind phase Ⅲ clinical trial was conducted in 43 subcenters in China.This study complied with the research protocol,the ethical principles stated in the Declaration of Helsinki and the quality management standards for drug clinical trials.It was approved by the hospital's medical ethics committee.The clinical trial registration agency is the State Food and Drug Administration(clinical trial approval number:2015L04224;clinical trial registration number:CTR20170516).Written informed consent was obtained from subjects before enrollment.Enrolled patients were randomly assigned to the AK-HER2 group and the control group,respectively receiving AK-HER2 or trastuzumab(initial loading dose 8 mg/kg,maintenance dose 6 mg/kg,every 3 weeks as a treatment cycle,total treatment time is 16 cycles)in combination with docetaxel(75 mg/m2,treatment duration is at least 9 cycles).The primary endpoint of this clinical trial was the objective response rate(ORR9)between the AK-HER2 group and the control group in the 9th cycle.Secondary efficacy endpoints included ORR16,disease control rate(DCR),clinical benefit rate(CBR),progression-free survival(PFS)and 1-year survival rate.In this study,100 subjects(AK-HER2 group to control group=1:1)were randomly selected for blood sample collection after the 6th cycle of medication,The collection time points were 45 minutes after infusion(the end of administration),4,8,24,72,120,168,336,and 504 hours after the end of administration.After collection,blood samples were analyzed by PK parameter set(PKPS).Other evaluation parameters included safety and immunogenicity assessment.Results:A total of 550 patients with HER2-positive metastatic breast cancer were enrolled in this clinical trial between Sep.2017 and Mar.2021.In the AK-HER2 group(n=237),129 subjects in the experimental group achieved complete response(CR)or partial response(PR),and the ORR9 was 54.4%.There were 134 subjects in the control group(n=241)who achieved CR or PR,and the ORR9 was 55.6%.The ORR9 ratio between the AK-HER2 group and the control group was 97.9%[90%confidence interval(CI):85.4%-112.2%,P=0.784],which was not statistically significant.In all secondary efficacy endpoints,no statistically significant differences were observed between the two groups.We conducted a mean ratio analysis of pharmacokinetics(PK)parameters between the AK-HER2 group and the control group,and the results suggested that the pharmacokinetic characteristics of the two drugs are similar.The incidence of treatment emergent adverse event(TEAE)leading to drug reduction or suspension during trastuzumab treatment was 3.6%(10 cases)in the AK-HER2 group and 8.1%(22 cases)in the control group.There was statistically significant difference between the two groups(P=0.027).The incidence rate was significantly lower in the AK-HER2 group than in the control group,and there was no statistically significant difference among the other groups.The differences in the positive rates of anti-drug antibodies(ADA)and neutralizing antibodies(NAB)between groups were of no statistical significance(P=0.385 and P=0.752).Conclusion:In patients with HER2-positive metastatic breast cancer,AK-HER2 was comparable to the trastuzumab(Herceptin?)in terms of drug efficacy,pharmacokinetics,safety and immunogenicity.
10.Transcriptomic Analysis of Wuzi Yanzongwan on Testicular Spermatogenic Function in Semi-castrated Male Mice
Dixin ZOU ; Yueyang ZHANG ; Xuedan MENG ; Wei LU ; Shuang LYU ; Fanjun ZENG ; Kun CHEN ; Chang LIU ; Zhongxiu ZHANG ; Yu DUAN ; Yihang DAI ; Zhaoyi WANG ; Zhimin WANG ; Ruichao LIN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(1):61-69
ObjectiveTo screen out the transcriptomes related to the intervention of Wuzi Yanzongwan on the spermatogenic function of semi-castrated male mice, and to explore its potential mechanism in the intervention of the progress of low spermatogenic function. MethodBalb/c mice were randomly divided into sham-operated group, model group, testosterone propionate group(0.2 mg·kg-1·d-1, intramuscular injection) and Wuzi Yanzongwan group(1.56 g·kg-1·d-1, intragastric administration) according to body weight, with 12 mice in each group. The right testicle and epididymis were extracted from the model group and the drug administration group to construct the semi-castrated model of low spermatogenic function, while the fur and the right scrotum of the sham-operated group were only cut and immediately sterilized and sutured. At the end of the intervention, hematoxylin-eosin(HE) staining was used to observe the histopathology of testis, enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of serum testosterone(T), luteinizing hormone(LH) and follicle stimulating hormone(FSH). The sperm count and motility of epididymis were measured by automatic sperm detector of small animal. Transcriptomic microarray technology was used to detect the mRNA expression level of testicular tissue in each group, the transcriptome of genes related to the regulation of Wuzi Yanzongwan was screened, and three mRNAs were selected for Real-time fluorescence quantitative polymerase chain reaction(Real-time PCR) to verify the transcriptome data. Through the annotation analysis of Gene Ontology(GO) and the signaling pathway analysis of Kyoto Encyclopedia of Genes and Genomes(KEGG), the related functions of drugs regulating transcriptome were analyzed. ResultCompared with the sham-operated group, the testicular tissue of mice in the model group showed spermatogenic injury, contraction and vacuolization of the seminiferous tubules, reduction of spermatogenic cells at all levels, widening of the interstitial space, obstruction of spermatogonial cell development and other morphological abnormalities, and serum T significantly decreased, LH significantly increased(P<0.01), and FSH elevated but no statistically significant difference, the count and vitality of epididymal sperm significantly decreased(P<0.01). There were 882 differentially expressed mRNAs in the testicular tissues, of which 565 were up-regulated and 317 were down-regulated. Cluster analysis showed that these differentially expressed mRNA could effectively distinguish between the sham-operated group and the model group. Compared with the model group, the damage to testicular tissue in the Wuzi Yanzongwan group was reduced, the structure of the seminiferous tubules was intact, vacuolization was reduced, and the number of spermatogenic cells at all levels was significantly increased and arranged tightly. The serum T significantly increased, LH significantly decreased(P<0.01), and FSH decreased but the difference was not statistically significant. The count and vitality of sperm in the epididymis were significantly increased(P<0.01). Moreover, Wuzi Yanzongwan could regulate 159 mRNA levels in the testes of semi-castrated mice, of which 32 were up-regulated and 127 were down-regulated, and the data of the transcriptome assay was verified to be reliable by Real-time PCR. GO and KEGG analysis showed that the transcriptome functions regulated by Wuzi Yanzongwan were involved in the whole cell cycle process of sperm development such as sex hormone production of interstitial cells in testis, renewal, differentiation, metabolism, apoptosis and signal transduction of spermatogenic cells, and were closely related to the biological behaviors of signaling pathways such as spermatogenic stem cell function, endoplasmic reticulum protein processing and metabolic program. ConclusionWuzi Yanzongwan can effectively improve the low spermatogenic function of semi-castrated male mice, and its mechanism may be related to the regulation of testicular transcriptional regulatory network, the synthesis of sex hormones in testicular interstitial cells, the function of spermatogenic stem cells, the whole cell cycle process of spermatogenesis, as well as the expression of endoplasmic reticulum protein processing and metabolic program related genes transcription.


Result Analysis
Print
Save
E-mail