1.Exploring mechanism of Porana racemosa Roxb. in treating rheumatoid arthritis based on integration of network pharmacology and molecular docking combined with experimental validation
Chen-yu YE ; Ning LI ; Yin-zi CHEN ; Tong QU ; Jing HU ; Zhi-yong CHEN ; Hui REN
Acta Pharmaceutica Sinica 2025;60(1):117-129
Through network pharmacology and molecular docking technology, combined with
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.The material basis and mechanism of action of anti-inflammatory effects of simplified Zhiqin Decoction
Kun WANG ; Yang LIU ; Yue YIN ; Xiao XIAO ; Xue-jiao ZHOU ; Zhi-ying YUAN ; Liang-hong YE ; Xiao-yu XU
Acta Pharmaceutica Sinica 2024;59(8):2245-2254
The anti-inflammatory effect of simplified Zhiqin Decoction was observed by using lipopolysaccharide (LPS)-induced inflammation mouse model. The main chemical constituents and the main mechanism of action of simplified Zhiqin Decoction were predicted by network pharmacology. Animal experiments verified the anti-inflammatory mechanism of simplified Zhiqin Decoction (this experiment was approved by the Animal Experiment Ethics Committee of Southwest University, approval number: IACUC-20210825-02). Simplifying Zhiqin Decoction has a significant anti-inflammatory effect on inflammatory mice, can significantly improve the overall macro shape of mice, reduce body temperature, water intake, increase the number of autonomous activities; alleviate liver, lung, spleen, thymus inflammation and pathological damage; decrease tumor necrosis factor-
6.Feasibility of a novel type of complex anterior cervical fixation by using Mimics software
Zhi-Peng HOU ; Sen-Qi YE ; Ji-Hui ZHANG ; Liu-Jun ZHAO ; Yong-Jie GU ; Liang YU
China Journal of Orthopaedics and Traumatology 2024;37(1):81-85
Objective To investigate the feasibility of mimics software in analyzing a new type of complex anterior cervical fixation—anterior transpedicular screw fixation+zero notch internal fixation.Methods From January 2021 to September 2022,50 normal pedestrians who underwent cervical spine CT scanning were selected for C1-C7 segment scanning,including 27 males and 23 females,aged from 25 to 65 years old with an average of(46.0±9.0)years old.The dicom format is exported and engraved into the CD,and use the mimics software to perform 3D reconstruction of each segment.A simulated screw is placed on the image according to the critical value of zero notch screw(head and tail angle 44°,internal angle 29°).The posi-tion of zero notch screw in each segment is observed to determine the feasibility of anterior transpedicular screw fixation plus zero notch internal fixation.Results For the upper zero notch screws the three-dimensional images of the cervical spine across all 50 subjects within the C3-C7 segments demonstrated safe position,wwith no instances of intersection with ATPS.For the lower zero notch screw,in C3-C4 and C4-C5,4 out of 50 subjects are in the safe position in the three-dimensional images of cervical ver-tebrae,and 46 cases could achieve secure screw placement when the maximum caudal angle is(32.3±1.9)° and(36.1±2.2)°,respectively.In C5-C6 and C6-C7 segments,no lower zero notch screws intersected with ATPS,and all screws are in safe posi-tions.Conclusion Lower cervical anterior pedicle screw fixation plus zero notch internal fixation can achieve successful nail placement through the selected entry point and position.
7.Pathological mechanism of hypoxia-inducible factor-1α in tumours and the current status of research on Chinese medicine intervention
Yu LIU ; Li-Ying ZHANG ; Guo-Xiong HAO ; Ya-Feng QI ; Qian XU ; Ye-Yuan LIU ; Chao YUAN ; Peng ZHU ; Yong-Qi LIU ; Zhi-Ming ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(11):1670-1674
Traditional Chinese medicine can regulate the hypoxia-inducible factor-1α(HIF-1α)signalling pathway and slow down tumour progression mainly by inhibiting tumour angiogenesis,glycolysis,epithelial mesenchymal transition and other pathological processes.This paper,starting from HIF-1α and related factors,reviews its pathological mechanism in tumours and the research of traditional Chinese medicine interventions with the aim of providing theoretical references for the treatment of tumours with traditional Chinese medicine.
8.Study on insulin resistance induced by supernatant of bone marrow mesenchymal stem cells derived from diabetic mice
Bao-Juan LI ; Ke-Chun ZHOU ; ABUDOULA·Mi-re-he-mai-ti ; ZULIHUMA·Re-he-man ; Yu-Meng YE ; Yan-Zhi ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(14):2033-2037
Objective To investigate the role of bone marrow mesenchymal stem cells derived from diabetic mice and their paracrine roles in inducing insulin resistance(IR).Methods The mouse model of diabetes mellitus was established,bone marrow mesenchymal stem cells(BMSC)were extracted and cultured,and the culture supernatant(M-BMSC-CS)was collected.(1)Cell experiment:HepG2 hepatocytes were divided into normal low-glycemic culture group[cultured with low-glycemic DMEM(5.55 mmol·L-1)],M-BMSC-CS experimental group(M-BMSC-CS 75 μL),and high-glycemic and high-lipid control group(given 25 mmol·L-1 high-glycemic DMEM+0.25 mmol·L-1 palmitic acid);(2)Animal experiments:Mice were divided into normal mice group(0.9%NaCl by intraperitoneal injection)and M-BMSC-CS-m group(M-BMSC-CS by intraperitoneal injection of normal mice(injection dose 0.2 mL/10 g)].Glucose intake was measured by glucose oxidase method.The fluorescence intensity of Glut2 protein was detected by immunofluorescence.The expression of insulin signaling pathway protein was detected by Western blot.Test oral glucose tolerance(OGTT)and insulin tolerance(ITT).Results The glucose intakes of the normal low-glucose culture group,the M-BMSC-CS experimental group and the high-glucose and high-lipid control group were(2.96±0.05),(1.64±0.28)and(1.42±0.32)mmol·L-1,respectively;the fluorescence expressions of glucose transporter 2(Glut2)were 53.21±2.70,30.95±3.39 and 34.96±7.60,respectively;the protein expression levels of phosphorylated insulin receptor substrate 1-ser307(p-IRS-1ser307)were 0.46±0.21,1.09±0.24 and 0.91±0.16,respectively;phosphorylated protein kinase(p-AKT)protein expression levels were 0.94±0.05,0.59±0.06 and 0.53±0.05;Glut2 protein expression levels were 1.08±0.14,0.58±0.14 and 0.62±0.09,respectively.The above indexes in M-BMSC-CS experimental group were statistically significant compared with those in normal low-glycemic culture group(all P<0.05).Fasting blood glucose levels in the normal group and M-BMSC-CS-m group were(5.23±0.57)and(9.30±1.14)mmol·L-1;p-AKT protein expression level were 1.27±0.21 and 0.51±0.19;Glut2 protein expression level were 1.17±0.17 and 0.79±0.09,respectively.The above indexes in M-BMSC-CS-m group were significantly different from those in normal mouse group(P<0.05).Conclusion BMSC culture supernatant from diabetic mice induced insulin resistance of normal HepG2 hepatocytes in vitro and normal mice in vivo.
9.High glucose and high fat can induce bone marrow mesenchymal stem cells damage and abnormal ferroptosis signaling pathway
ABUDOULA·Mi-re-he-mai-ti ; ZULIHUMA·Re-he-man ; Bao-Juan LI ; Yu-Meng YE ; Yan-Zhi ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(17):2508-2512
Objective To investigate the relationship between the injury and ferroptosis of bone marrow mesenchymal stem cells(BMSCs)induced by high glucose and high fat.Methods BMSCs were divided into normal group(5.50 mmol·L-1 glucose)and high glucose and high fat(HGHF)group(25.00 mmol·L-1 glucose+0.25 mmol·L-1 palmitic acid).Assessment of cellular aging via β-galactosidase staining;enzyme linked immunosorbent assay(ELISA)were used to detect tumor necrosis factor-α(TNF-α),interleukin-10(IL-10)release levels;glutathione(GSH),malondialdehyde(MDA)and ferrous ion(Fe2+)detection kits were used to detect ferroptosis related indicators;Western blotting was used to detect the expression of ferroptosis related signaling pathway protein acyl-CoA synthetase long chain family member 4(ACS14)/arachidonate 15-lipoxygenase(ALOX15)/glutathione peroxidase 4(GPX4).Results The senescence rates of normal group HGHF group were(6.80±1.60)%and(13.00±1.58)%;the levels of TNF-α were(122.54±3.94)and(169.77±2.89)pg·mL-1;the levels of IL-10 were(155.16±3.97)and(105.15±7.30)pg·mL-1;GSH levels were 4.30±0.33 and 1.55±0.14;MDA levels were 2.94±0.10 and 5.84±0.10;Fe2+levels were 6.22±0.35 and 16.13±0.36;the relative expression levels of ACSL4 protein were 0.42±0.05 and 0.84±0.10;the relative ALOX15 protein were 0.61±0.25 and 1.06±0.11;the relative expression levels of GPX4 protein were 1.13±0.17 and 0.33±0.08,respectively.The above indexes in the HGHF group were significantly different from those in the normal group(all P<0.05).Conclusion 25 mmol·L-1 glucose combined with 0.25 mmol·L-1 palmitic acid for 24 h can be used as a suitable condition to induce BMSCs injury.ferroptosis plays an important role in BMSCs injury induced by high glucose and high fat.
10.Biomarkers Screening and Mechanisms Analysis of the Restraint Stress-Induced Myocardial Injury in Hyperlipidemia ApoE-/-Mice
Shang-Heng CHEN ; Sheng-Zhong DONG ; Zhi-Min WANG ; Guang-Hui HONG ; Xing YE ; Zi-Jie LIN ; Jun-Yi LIN ; Jie-Qing JIANG ; Shou-Yu WANG ; Han-Cheng LIN ; Yi-Wen SHEN
Journal of Forensic Medicine 2024;40(2):172-178
Objective To explore the biomarkers and potential mechanisms of chronic restraint stress-induced myocardial injury in hyperlipidemia ApoE-/-mice.Methods The hyperlipidemia combined with the chronic stress model was established by restraining the ApoE-/-mice.Proteomics and bioinformatics techniques were used to describe the characteristic molecular changes and related regulatory mechanisms of chronic stress-induced myocardial injury in hyperlipidemia mice and to explore potential diagnostic biomarkers.Results Proteomic analysis showed that there were 43 significantly up-regulated and 58 sig-nificantly down-regulated differentially expressed proteins in hyperlipidemia combined with the restraint stress group compared with the hyperlipidemia group.Among them,GBP2,TAOK3,TFR1 and UCP1 were biomarkers with great diagnostic potential.KEGG pathway enrichment analysis indicated that fer-roptosis was a significant pathway that accelerated the myocardial injury in hyperlipidemia combined with restraint stress-induced model.The mmu_circ_0001567/miR-7a/Tfr-1 and mmu_circ_0001042/miR-7a/Tfr-1 might be important circRNA-miRNA-mRNA regulatory networks related to ferroptosis in this model.Conclusion Chronic restraint stress may aggravate myocardial injury in hyperlipidemia mice via ferrop-tosis.Four potential biomarkers are selected for myocardial injury diagnosis,providing a new direction for sudden cardiac death(SCD)caused by hyperlipidemia combined with the restraint stress.

Result Analysis
Print
Save
E-mail