1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2. Diallyl disulfide augments sensitivity of DJ-1 overexpressed human gastric cells to 5-FU
Yi XUN ; Hong XIA ; Zhi-Min LI ; Fang LIU ; Qi SU ; Bo SU ; Yi XUN ; Zhi-Min LI ; Bo SU
Chinese Pharmacological Bulletin 2024;40(1):99-105
Aim To investigate whether diallyl disul-fide (DADS) augments the sensitivity of DJ-1 (protein/ nucleic acid deglycase) overexpressed human gastric SGC7901 cells to 5-FU (5-fluorouracil). Methods The experimental groups include control group, DADS group, VCR (vincristine) group, VCR + DADS group, DJ-1 group, DJ-1 + DADS group. MTT was used to analyze the effect of DADS on 5 -FU (5 -fluorou- racil) induced proliferation inhibition. Flow cytometry was performed to examine the effect of DADS on cell apoptosis. RT-PCR, Western blot, and immunofluo-rescence were used for determine the effect of DADS on the drug resistance associated gene expression. Results DADS enhanced the proliferation inhibitory effect of 5-FU on DJ-1 overexpressed cells and VCR resistant cells. DADS could induce apoptosis in VCR-resistant cells. DADS downregulated the expression of DJ-1 while inducing apoptosis in DJ-1 overexpressed cells. DJ-1 overexpression upregulated the expression of P-gp (P-glycoprotein), Bcl-2, and XIAP (X-linked inhibitor of apoptosis protein), downregulated the expression of caspase-3. DADS decreased the expression of P-gp, Bcl-2, and XIAP, while increased the expression of caspase-3 in DJ-1 overexpressed cells and VCR-resistant cells. Conclusions DADS can augment the sensitivity of DJ-1 overexpressed cells to 5-FU, which is related to its antagonism against DJ-1 mediated upregula- tion of P-gp, Bcl-2, XIAP, and downregulation of caspase-3.
3. Expression, purification, and functional verification of recombinant human glycoprotein hormone beta 5/alpha 2 fusion protein in CHO-S cells
Ai-Jun QIAN ; Geng-Miao XIAO ; Zhuang LI ; Yun-Ping MU ; Zi-Jian ZHAO ; Fang-Hong LI ; Zhi-Cheng LIANG
Chinese Pharmacological Bulletin 2024;40(2):390-396
Aim To express and purify recombinant hCGH-CTP fusion protein in high-density suspension culture of Chinese hamster ovary cells (CHO-S), and to verify the lipid accumulation effect of rhCGH-CTP on 3T3-L1 mature adipocytes. Methods The recombinant protein expression vector (pcDNA3. 1-rhCGH-CTP) was constructed, achieved by fusing the human glycoprotein hormone beta 5/alpha 2 cDNA with CTP Linker. The expression plasmid was transiently transfected into the suspended CHO-S to express rhCGH-CTP protein and then purified, and the protein biological activity was verified. Intervention with 3T3-L1 mature adipocyte cells for 24 h was performed to detect the changes of intracellular triglyceride (TG) level. Results Western blot results showed that rhCGH-CTP protein was successfully expressed in CHO-S cells, and the yield was up to 715. 4 mg • L~ . The secreted protein was purified by AKTA pure system with higher purity that was up to 90% as identified by SDS-PAGE. In addition, the intracellular cAMP content of mature adipocytes with high expression of TSHR gene significantly increased after intervention with different concentrations of rhCGH-CTP protein by ELISA kit, indicating that rhCGH-CTP protein had biological activity. Oil red 0 staining showed that compared with the control group, the lipid content of mature adipocytes in the intervention groups with different concentrations of rhCGH-CTP protein significantly decreased (P < 0. 05) . Conclusions The rhCGH-CTP protein has been successfully expressed and purified with biological activity, and effectively reduce TG. This research provides an important theoretical basis for further revealing the physiological role of CGH protein and its potential application in clinical practice.
4.Lanthanide Metal Organic Framework as A New Unlabeled Fluorescence Anisotropy Probe for Detection of Phosphate Ions
Kai MAO ; Xiao-Yan WANG ; Yu-Jie LUO ; Jia-Li XIE ; Tian-Jin XIE ; Yuan-Fang LI ; Cheng-Zhi HUANG ; Shu-Jun ZHEN
Chinese Journal of Analytical Chemistry 2024;52(1):35-44,中插1-中插4
Fluorescence anisotropy(FA)analysis has many advantages such as no requirement of separation,high throughput and real-time detection,and thus has been widely used in many fields,including biochemical analysis,food safety detection,environmental monitoring,etc.However,due to the small volume or mass of the target,its combination with the fluorescence probe cannot produce significant signal change.To solve this issue,researchers often use nanomaterials to enhance the mass or volume of fluorophore to improve the sensitivity.Nevertheless,this FA amplification strategy also has some disadvantages.Firstly,nanomaterials are easy to quench fluorescence.As a result,the FA value is easily influenced by light scattering,which reduces the detection accuracy.Secondly,fluorescent probes in most methods require complex modification steps.Therefore,it is necessary to develop new FA probes that do not require the amplification of volume and mass or modification.As a new kind of nanomaterials,luminescent metal-organic framework(MOF)has a large volume(or mass)and strong fluorescence emission.It does not require additional signal amplification materials.As a consequence,it can be used as a potential FA probe.This study successfully synthesized a lanthanide metal organic framework(Ce-TCPP MOF)using cerium ion(Ce3+)as the central ion and 5,10,15,20-tetra(4-carboxylphenyl)porphyrin(H2TCPP)as the ligand through microwave assisted method,and used it as a novel unmodified FA probe to detect phosphate ions(Pi).In the absence of Pi,Ce-TCPP MOF had a significant FA value(r).After addition of Pi,Pi reacted with Ce3+in MOF and destroyed the structure of MOF into the small pieces,resulting in a decrease in r.The experimental results indicated that with the increase of Pi concentration,the change of the r of Ce-TCPP MOF(Δr)gradually increased.The Δr and Pi concentration showed a good linear relationship within the range of 0.5-3.5 μmol/L(0.016-0.108 mg/L).The limit of detection(LOD,3σ/k)was 0.41 μmol/L.The concentration of Pi in the Jialing River water detected by this method was about 0.078 mg/L,and the Pi value detected by ammonium molybdate spectrophotometry was about 0.080 mg/L.The two detection results were consistent with each other,and the detection results also meet the ClassⅡwater quality standard,proving that this method could be used for the detection of Pi in complex water bodies.
5.Correlation of FSHR gene polymorphism,BMI and sex hormone six with the risk of polycystic ovary syndrome
Zhi-Fang ZAN ; Zeng-Rong TU ; Qi-Rong WANG ; Yu DUAN ; Jian-Bing LIU ; Li LI
Medical Journal of Chinese People's Liberation Army 2024;49(1):50-56
Objective To investigate the association between body mass index(BMI),sex hormone and single nucleotide polymorphisms(SNPs)of follicle-stimulating hormone receptor(FSHR)gene rs2268361 and rs2349415 and its correlation with the risk of polycystic ovary syndrome(PCOS).Methods Peripheral blood was collected from 213 PCOS patients and 207 healthy controls,attending the Department of Reproductive Medicine at the First Hospital of Shanxi Medical University,and 32 follicular fluids were randomly collected from each of the PCOS and control groups from March to August 2021.Calculation of BMI of the PCOS and control groups;The levels of follicle-stimulating hormone(FSH),luteinizing hormone(LH),estradiol(E2),testosterone(T),progesterone(P)and prolactin(PRL)in peripheral blood of the two groups were detected by immunochemiluminescence method.Polymerase chain reaction(PCR)and high-resolution melting curve(HRM)were used to analyze the polymorphisms of rs2268361 and rs2349415 in FSHR of the two groups.Quantitative real-time PCR was used to detect the expression of FSHR gene mRNA in peripheral blood and ovarian granulosa cells.Results There was a strong positive correlation between LH and LH/FSH(r=0.88,P<0.05);The levels of BMI,E2,LH,LH/FSH and T in PCOS group were significantly higher than those in control group(P<0.05);FSH level was significantly lower than that of control group(P<0.001).HRM analysis showed the frequencies of CC,CT and TT genotypes at rs2349415 were 55.9%,34.3%and 9.8%in PCOS group and 68.6%,23.2%and 8.2%in control group,respectively.The frequencies of C and T alleles were 73.0%and 27.0%in PCOS group and 80.2%and 19.8%in control group,respectively.There were significant differences in genotype frequencies and allele frequencies between the two groups(P<0.05);The expression level of FSHR mRNA was higher in ovarian granulosa cells in PCOS group than in control group(P=0.004),the expression level of FSHR mRNA in rs2349415 TT genotype was higher than that in CC(P=0.002)and CT(P=0.035)genotype.Conclusion High levels of BMI, LH, E2 and T allele of rs2349415 increased the risk of PCOS.
6.Cellular Temperature Imaging Technology Based on Single-molecule Quantum Coherent Modulation
Hai-Tao ZHOU ; Cheng-Bing QIN ; Lian-Tuan XIAO ; Zhi-Fang WU ; Si-Jin LI
Progress in Biochemistry and Biophysics 2024;51(5):1215-1220
ObjectiveCellular temperature imaging can assist scientists in studying and comprehending the temperature distribution within cells, revealing critical information about cellular metabolism and biochemical processes. Currently, cell temperature imaging techniques based on fluorescent temperature probes suffer from limitations such as low temperature resolution and a limited measurement range. This paper aims to develop a single-cell temperature imaging and real-time monitoring technique by leveraging the temperature-dependent properties of single-molecule quantum coherence processes. MethodsUsing femtosecond pulse lasers, we prepare delayed and phase-adjustable pairs of femtosecond pulses. These modulated pulse pairs excite fluorescent single molecules labeled within cells through a microscopic system, followed by the collection and recording of the arrival time of each fluorescent photon. By defining the quantum coherence visibility (V) of single molecules in relation to the surrounding environmental temperature, a correspondence between V and environmental temperature is established. By modulating and demodulating the arrival times of fluorescent photons, we obtain the local temperature of single molecules. Combined with scanning imaging, we finally achieve temperature imaging and real-time detection of cells. ResultsThis method achieves high precision (temperature resolution<0.1°C) and a wide temperature range (10-50°C) for temperature imaging and measurement, and it enables the observation of temperature changes related to individual cell metabolism. ConclusionThis research contributes to a deeper understanding of cellular metabolism, protein function, and disease mechanisms, providing a valuable tool for biomedical research.
7.Application Study of Enzyme Inhibitors and Their Conformational Optimization in The Treatment of Alzheimer’s Disease
Chao-Yang CHU ; Biao XIAO ; Jiang-Hui SHAN ; Shi-Yu CHEN ; Chu-Xia ZHANG ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Zhi-Cheng LIN ; Kai XIE ; Shu-Jun XU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2024;51(7):1510-1529
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment, and there is a lack of effective drugs to treat AD clinically. Existing medications for the treatment of AD, such as Tacrine, Donepezil, Rivastigmine, and Aducanumab, only serve to delay symptoms and but not cure disease. To add insult to injury, these medications are associated with very serious adverse effects. Therefore, it is urgent to explore effective therapeutic drugs for AD. Recently, studies have shown that a variety of enzyme inhibitors, such as cholinesterase inhibitors, monoamine oxidase (MAO)inhibitors, secretase inhibitors, can ameliorate cholinergic system dysfunction, Aβ production and deposition, Tau protein hyperphosphorylation, oxidative stress damage, and the decline of synaptic plasticity, thereby improving AD symptoms and cognitive function. Some plant extracts from natural sources, such as Umbelliferone, Aaptamine, Medha Plus, have the ability to inhibit cholinesterase activity and act to improve learning and cognition. Isochromanone derivatives incorporating the donepezil pharmacophore bind to the catalytic active site (CAS) and peripheral anionic site (PAS) sites of acetylcholinesterase (AChE), which can inhibit AChE activity and ameliorate cholinergic system disorders. A compound called Rosmarinic acid which is found in the Lamiaceae can inhibit monoamine oxidase, increase monoamine levels in the brain, and reduce Aβ deposition. Compounds obtained by hybridization of coumarin derivatives and hydroxypyridinones can inhibit MAO-B activity and attenuate oxidative stress damage. Quinoline derivatives which inhibit the activation of AChE and MAO-B can reduce Aβ burden and promote learning and memory of mice. The compound derived from the combination of propargyl and tacrine retains the inhibitory capacity of tacrine towards cholinesterase, and also inhibits the activity of MAO by binding to the FAD cofactor of monoamine oxidase. A series of hybrids, obtained by an amide linker of chromone in combine with the benzylpiperidine moieties of donepezil, have a favorable safety profile of both cholinesterase and monoamine oxidase inhibitory activity. Single domain antibodies (such as AAV-VHH) targeted the inhibition of BACE1 can reduce Aβ production and deposition as well as the levels of inflammatory cells, which ultimately improve synaptic plasticity. 3-O-trans-p-coumaroyl maslinic acid from the extract of Ligustrum lucidum can specifically inhibit the activity of γ-secretase, thereby rescuing the long-term potentiation and enhancing synaptic plasticity in APP/PS1 mice. Inhibiting γ-secretase activity which leads to the decline of inflammatory factors (such as IFN-γ, IL-8) not only directly improves the pathology of AD, but also reduces Aβ production. Melatonin reduces the transcriptional expression of GSK-3β mRNA, thereby decreasing the levels of GSK-3β and reducing the phosphorylation induced by GSK-3β. Hydrogen sulfide can inhibitGSK-3β activity via sulfhydration of the Cys218 site of GSK-3β, resulting in the suppression of Tau protein hyperphosphorylation, which ameliorate the motor deficits and cognitive impairment in mice with AD. This article reviews enzyme inhibitors and conformational optimization of enzyme inhibitors targeting the regulation of cholinesterase, monoamine oxidase, secretase, and GSK-3β. We are hoping to provide a comprehensive overview of drug development in the enzyme inhibitors, which may be useful in treating AD.
8.Raman Spectroscopy Analysis of The Temporal Heterogeneity in Lung Cell Carcinogenesis Induced by Benzo(a)pyrene
Hai-Tao ZHOU ; Wei YAO ; Cao-Zhe CUI ; Xiao-Tong ZHOU ; Xi-Long LIANG ; Cheng-Bing QIN ; Lian-Tuan XIAO ; Zhi-Fang WU ; Si-Jin LI
Progress in Biochemistry and Biophysics 2024;51(6):1458-1470
ObjectiveTemporal heterogeneity in lung cancer presents as fluctuations in the biological characteristics, genomic mutations, proliferation rates, and chemotherapeutic responses of tumor cells over time, posing a significant barrier to effective treatment. The complexity of this temporal variance, coupled with the spatial diversity of lung cancer, presents formidable challenges for research. This article will pave the way for new avenues in lung cancer research, aiding in a deeper understanding of the temporal heterogeneity of lung cancer, thereby enhancing the cure rate for lung cancer. MethodsRaman spectroscopy emerges as a powerful tool for real-time surveillance of biomolecular composition changes in lung cancer at the cellular scale, thus shedding light on the disease’s temporal heterogeneity. In our investigation, we harnessed Raman spectroscopic microscopy alongside multivariate statistical analysis to scrutinize the biomolecular alterations in human lung epithelial cells across various timeframes after benzo(a)pyrene exposure. ResultsOur findings indicated a temporal reduction in nucleic acids, lipids, proteins, and carotenoids, coinciding with a rise in glucose concentration. These patterns suggest that benzo(a)pyrene induces structural damage to the genetic material, accelerates lipid peroxidation, disrupts protein metabolism, curtails carotenoid production, and alters glucose metabolic pathways. Employing Raman spectroscopy enabled us to monitor the biomolecular dynamics within lung cancer cells in a real-time, non-invasive, and non-destructive manner, facilitating the elucidation of pivotal molecular features. ConclusionThis research enhances the comprehension of lung cancer progression and supports the development of personalized therapeutic approaches, which may improve the clinical outcomes for patients.
9.Effect and mechanism of pachymic acid on renal function and fibrosis in rats with chronic renal failure
Bin PENG ; Xue FENG ; Li FENG ; Wei XIONG ; Xi HU ; Shuangyi ZHU ; Yang XIAO ; Fang CHEN ; Zhi GAO
China Pharmacy 2024;35(12):1489-1494
OBJECTIVE To investigate the effect of pachymic acid (PA) on renal function and fibrosis in chronic renal failure (CRF) rats and its potential mechanism based on the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil forming protein kinase (ROCK) signaling pathway. METHODS Using male SD rats as subjects, the CRF model was established by 5/6 nephrectomy; the successfully modeled rats were divided into model group, PA low-dose, medium-dose and high-dose groups (5, 10, 20 mg/kg PA), high-dose PA+ROCK pathway activator lysophosphatidic acid (LPA) group (20 mg/kg PA+1 mg/kg LPA), with 15 rats in each group. Another 15 rats were selected as the sham operation group with only the kidney exposed but not excised. The rats in each drug group were gavaged and/or injected with the corresponding liquid via the caudal vein, once a day, for 12 consecutive weeks. During the experiment, the general condition of rats was observed in each group. After the last administration, the serum renal function indexes (blood urea nitrogen, serum creatinine, uric acid) of rats in each group were detected, the renal histopathological changes were observed; the renal tubule injury score and the area of renal fibrosis were quantified. The levels of oxidative stress indexes [malondialdehyde (MDA), superoxide dismutase (SOD)] and inflammatory factors (tumor necrosis factor-α, interleukin-1β, interleukin-6), the positive expression rates of connective tissue growth factor (CTGF) and collagen Ⅰ were detected as well as the expression levels of pathway-related proteins (RhoA, ROCK1) and fibrosis- related proteins (transforming growth factor-β1, bare corneum homologs 2, α-smooth muscle actin) were determined. RESULTS Compared with the sham operation group, the rats in model group had reduced diet, smaller body size, listless spirit and sluggish response, reduced and atrophied glomeruli, dilated renal tubules with chaotic structure, and a large number of inflammatory cells infiltrated interstitium; the serum levels of renal function indexes, renal tubule injury score, renal fibrosis area proportion, the levels of MDA and inflammatory factors, the positive expression rates of CTGF and collagen Ⅰ, and the expression levels of pathway-related proteins and fibrosis-related proteins in renal tissues were significantly increased, while SOD level was significantly decreased (P<0.05). Compared with the model group, the general condition and pathological injuries of kidney tissue of rats in PA groups were improved to varying degrees,and the above quantitative indexes were significantly improved in a dose-dependent manner (P<0.05). LPA could significantly reverse the improvement effect of PA on the above indicators (P<0.05). CONCLUSIONS PA can improve renal function and alleviate renal fibrosis in CRF rats, which may be related to inhibiting the activation of RhoA/ROCK signaling pathway.
10.No Incidence of Liver Cancer Was Observed in A Retrospective Study of Patients with Aristolochic Acid Nephropathy.
Tao SU ; Zhi-E FANG ; Yu-Ming GUO ; Chun-Yu WANG ; Jia-Bo WANG ; Dong JI ; Zhao-Fang BAI ; Li YANG ; Xiao-He XIAO
Chinese journal of integrative medicine 2024;30(2):99-106
OBJECTIVE:
To assess the risk of aristolochic acid (AA)-associated cancer in patients with AA nephropathy (AAN).
METHODS:
A retrospective study was conducted on patients diagnosed with AAN at Peking University First Hospital from January 1997 to December 2014. Long-term surveillance and follow-up data were analyzed to investigate the influence of different factors on the prevalence of cancer. The primary endpoint was the incidence of liver cancer, and the secondary endpoint was the incidence of urinary cancer during 1 year after taking AA-containing medication to 2014.
RESULTS:
A total of 337 patients diagnosed with AAN were included in this study. From the initiation of taking AA to the termination of follow-up, 39 patients were diagnosed with cancer. No cases of liver cancer were observed throughout the entire follow-up period, with urinary cancer being the predominant type (34/39, 87.17%). Logistic regression analysis showed that age, follow-up period, and diabetes were potential risk factors, however, the dosage of the drug was not significantly associated with urinary cancer.
CONCLUSIONS
No cases of liver cancer were observed at the end of follow-up. However, a high prevalence of urinary cancer was observed in AAN patients. Establishing a direct causality between AA and HCC is challenging.
Humans
;
Retrospective Studies
;
Incidence
;
Carcinoma, Hepatocellular
;
Liver Neoplasms/epidemiology*
;
Kidney Diseases/chemically induced*
;
Aristolochic Acids/adverse effects*

Result Analysis
Print
Save
E-mail