1.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
		                        		
		                        			
		                        			ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research. 
		                        		
		                        		
		                        		
		                        	
2.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
		                        		
		                        			 Purpose:
		                        			The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations. 
		                        		
		                        			Methods:
		                        			This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits. 
		                        		
		                        			Results:
		                        			Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01). 
		                        		
		                        			Conclusion
		                        			Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors. 
		                        		
		                        		
		                        		
		                        	
3.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
		                        		
		                        			 Purpose:
		                        			The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations. 
		                        		
		                        			Methods:
		                        			This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits. 
		                        		
		                        			Results:
		                        			Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01). 
		                        		
		                        			Conclusion
		                        			Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors. 
		                        		
		                        		
		                        		
		                        	
4.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
		                        		
		                        			 Purpose:
		                        			The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations. 
		                        		
		                        			Methods:
		                        			This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits. 
		                        		
		                        			Results:
		                        			Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01). 
		                        		
		                        			Conclusion
		                        			Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors. 
		                        		
		                        		
		                        		
		                        	
5.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
		                        		
		                        			 Purpose:
		                        			The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations. 
		                        		
		                        			Methods:
		                        			This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits. 
		                        		
		                        			Results:
		                        			Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01). 
		                        		
		                        			Conclusion
		                        			Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors. 
		                        		
		                        		
		                        		
		                        	
6.Intelligent handheld ultrasound improving the ability of non-expert general practitioners in carotid examinations for community populations: a prospective and parallel controlled trial
Pei SUN ; Hong HAN ; Yi-Kang SUN ; Xi WANG ; Xiao-Chuan LIU ; Bo-Yang ZHOU ; Li-Fan WANG ; Ya-Qin ZHANG ; Zhi-Gang PAN ; Bei-Jian HUANG ; Hui-Xiong XU ; Chong-Ke ZHAO
Ultrasonography 2025;44(2):112-123
		                        		
		                        			 Purpose:
		                        			The aim of this study was to investigate the feasibility of an intelligent handheld ultrasound (US) device for assisting non-expert general practitioners (GPs) in detecting carotid plaques (CPs) in community populations. 
		                        		
		                        			Methods:
		                        			This prospective parallel controlled trial recruited 111 consecutive community residents. All of them underwent examinations by non-expert GPs and specialist doctors using handheld US devices (setting A, setting B, and setting C). The results of setting C with specialist doctors were considered the gold standard. Carotid intima-media thickness (CIMT) and the features of CPs were measured and recorded. The diagnostic performance of GPs in distinguishing CPs was evaluated using a receiver operating characteristic curve. Inter-observer agreement was compared using the intragroup correlation coefficient (ICC). Questionnaires were completed to evaluate clinical benefits. 
		                        		
		                        			Results:
		                        			Among the 111 community residents, 80, 96, and 112 CPs were detected in settings A, B, and C, respectively. Setting B exhibited better diagnostic performance than setting A for detecting CPs (area under the curve, 0.856 vs. 0.749; P<0.01). Setting B had better consistency with setting C than setting A in CIMT measurement and the assessment of CPs (ICC, 0.731 to 0.923). Moreover, measurements in setting B required less time than the other two settings (44.59 seconds vs. 108.87 seconds vs. 126.13 seconds, both P<0.01). 
		                        		
		                        			Conclusion
		                        			Using an intelligent handheld US device, GPs can perform CP screening and achieve a diagnostic capability comparable to that of specialist doctors. 
		                        		
		                        		
		                        		
		                        	
7.The Invariant Neural Representation of Neurons in Pigeon’s Ventrolateral Mesopallium to Stereoscopic Shadow Shapes
Xiao-Ke NIU ; Meng-Bo ZHANG ; Yan-Yan PENG ; Yong-Hao HAN ; Qing-Yu WANG ; Yi-Xin DENG ; Zhi-Hui LI
Progress in Biochemistry and Biophysics 2025;52(10):2614-2626
		                        		
		                        			
		                        			ObjectiveIn nature, objects cast shadows due to illumination, forming the basis for stereoscopic perception. Birds need to adapt to changes in lighting (meaning they can recognize stereoscopic shapes even when shadows look different) to accurately perceive different three-dimensional forms. However, how neurons in the key visual brain area in birds handle these lighting changes remains largely unreported. In this study, pigeons (Columba livia) were used as subjects to investigate how neurons in pigeon’s ventrolateral mesopallium (MVL) represent stereoscopic shapes consistently, regardless of changes in lighting. MethodsVisual cognitive training combined with neuronal recording was employed. Pigeons were first trained to discriminate different stereoscopic shapes (concave/convex). We then tested whether and how light luminance angle and surface appearance of the stereoscopic shapes affect their recognition accuracy, and further verify whether the results rely on specify luminance color. Simultaneously, neuronal firing activity of neurons was recorded with multiple electrode array implanted from the MVL during the presentation of difference shapes. The response was finally analyzed how selectively they responded to different stereoscopic shapes and whether their selectivity was affected by the changes of luminance condition (like lighting angle) or surface look. Support vector machine (SVM) models were trained on neuronal population responses recorded under one condition (light luminance angle of 45°) and used to decode responses under other conditions (light luminance angle of 135°, 225°, 315°) to verify the invariance of responses to different luminance conditions. ResultsBehavioral results from 6 pigeons consistently showed that the pigeons could reliably identify the core 3D shape (over 80% accuracy), and this ability wasn’t affected by changes in light angle or surface appearance. Statistical analysis of 88 recorded neurons from 6 pigeons revealed that 83% (73/88) showed strong selectivity for specific 3D shapes (selectivity index>0.3), and responses to convex shapes were consistently stronger than to concave shapes. These shape-selective responses remained stable across changes in light angle and surface appearance. Neural patterns were consistent under both blue and orange lighting. The decoding accuracy achieves above 70%, suggesting stable responses under different conditions (e.g., different lighting angles or surface appearance). ConclusionNeurons in the pigeon MVL maintain a consistent neural encoding pattern for different stereoscopic shapes, unaffected by illumination or surface appearance. This ensures stable object recognition by pigeons in changing visual environments. Our findings provide new physiological evidence for understanding how birds achieve stable perception (“invariant neural representations”) while coping with variations in the visual field. 
		                        		
		                        		
		                        		
		                        	
8.Suggestions for revision of the epilepsy items in the military disability appraisal norms
Shu-Yi QU ; Ze CHEN ; Yuan-Hang PAN ; Ze-Zhi WANG ; Xin-Bo ZHANG ; Yong-Hong LIU
Medical Journal of Chinese People's Liberation Army 2024;49(1):6-9
		                        		
		                        			
		                        			Epilepsy is a common neurological disease,has the characteristics of recurrent attacks and long-term treatment,thus bringing great pressure to patients and their families.Therefore,it is particularly important to do a good job of disability assessment.In recent years,with the development of the discipline,academic organizations such as the International League Against Epilepsy(ILAE)and China Association Against Epilepsy(CAAE)have successively updated the definition and diagnostic criteria of epilepsy and seizures.However,some items of epilepsy in the current Criteria for Disability Rating of Military Personnel(Trial)issued by People's Liberation Army(PLA)in 2011 can no longer meet the latest guidelines at home and abroad.Therefore,we suggest that the items related to epilepsy in the Criteria for Disability Rating of Military Personnel(Trial)should be revised to ensure that the disability evaluation being completed fairly and successfully.
		                        		
		                        		
		                        		
		                        	
9.Status of wearable flexible monitoring devices based on organic field effect transistors in biomedical field
Kai GUO ; Cui-Zhi TANG ; Bo SUN ; Duan-Qiang XIAO ; Yuan-Biao LIU ; En-Xiang JIAO ; Jie GONG ; Hai-Jun ZHANG
Chinese Medical Equipment Journal 2024;45(1):93-100
		                        		
		                        			
		                        			The working principle and development of flexible semiconductor devices based on organic field effect transistor(OFET)technology were introduced.The current research status of OFET-based wearable flexible monitoring devices were reviewed,including biomechanical monitoring devices,tattoo biomonitoring devices and cellular detection devices and etc.The deficiencies of OFET-based wearable flexible monitoring devices were analyzed,and it's pointed out that miniaturization,personalization and diversification were the directions for the development of the future OFET-based wearable flexible moni-toring devices.[Chinese Medical Equipment Journal,2024,45(1):93-100]
		                        		
		                        		
		                        		
		                        	
10.Mediation effects of serum uric acid levels in the association between air pollutants and atrial fibrillation
Bo LIU ; Xinyue ZHANG ; Ge GE ; Hong ZHI ; Ailian WANG ; Lina WANG
Chinese Journal of Cardiology 2024;52(5):519-524
		                        		
		                        			
		                        			Objective:To investigate the association between air pollutant exposure levels and the risk of atrial fibrillation and to evaluate the mediating role of serum uric acid levels in the association between air pollutant levels and atrial fibrillation risks.Methods:This study was a case-control study, and the data of the atrial fibrillation group was derived from atrial fibrillation patients diagnosed at the Zhongda Hospital, Affiliated to Southeast University, from January 2014 to April 2021, and data of control group was derived from those without atrial fibrillation at the screening in Qixia District, Nanjing City, in March to April 2019. A 1∶1 propensity score matching was performed with the matched variables of age and sex. Air pollutant exposure data were collected from 9 air quality monitoring stations in Nanjing from January 2014 to April 2021, including NO 2, CO, PM 2.5 and PM 10. Exposure to air pollutants was converted to respiratory exposure levels according to an approximate formula. Multivariate logistic regression models were used to analyze the association between air pollutants and the risk of atrial fibrillation. Mediation analysis was used to investigate the mediating role and magnitude of serum uric acid in the association pathway between the four air pollutants (PM 2.5, PM 10, NO 2, and CO) and atrial fibrillation. Results:The atrial fibrillation group was aged (68.7±11.3) years, with 544 (51.8%) males; the control group was aged (68.5±8.9) years, with 543 (51.7%) males. Multivariate logistic regression models suggested that individual exposure levels of all four air pollutants were associated with the increased risks of atrial fibrillation. Every 1 μg·kg -1·d -1 increased in NO 2 was associated 12.1% increased risk of atrial fibrillation among the individuals ( OR=1.121, 95% CI:1.098-1.144); For every 1 μg·kg -1·d -1 increased in CO, the individual risk of atrial fibrillation increased by 0.7% ( OR=1.007, 95% CI: 1.006-1.008). For each 1 μg·kg -1·d -1 increase in PM 2.5 exposure level, the individual risk of atrial fibrillation increased by 14.2% ( OR=1.142, 95% CI: 1.120-1.164). For each 1 μg·kg -1·d -1 increase in PM 10 exposure level, the individual risk of atrial fibrillation increased by 3.7% ( OR=1.037, 95% CI: 1.028-1.046). The results of the mediation analysis suggested that serum uric acid levels mediated 5.6% ( P=0.032) causal effects of PM 2.5 on atrial fibrillation risks and 7.5% ( P=0.010) mediated by CO. Conclusion:Air pollutant exposure was a risk factor for the development of atrial fibrillation and uric acid mediated the increased risk of atrial fibrillation by PM 2.5 and CO.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail