1.Resveratrol activates extracellular-regulated protein kinase 5 signaling protein to promote proliferation of mouse MC3T3-E1 cells
Yongkang NIU ; Zhiwei FENG ; Yaobin WANG ; Zhongcheng LIU ; Dejian XIANG ; Xiaoyuan LIANG ; Zhi YI ; Hongwei ZHAN ; Bin GENG ; Yayi XIA
Chinese Journal of Tissue Engineering Research 2025;29(5):908-916
BACKGROUND:The extracellular-regulated protein kinase 5(ERK5)signaling protein is essential for the survival of organisms,and resveratrol can promote osteoblast proliferation through various pathways.However,whether resveratrol can regulate osteoblast function through the ERK5 signaling protein needs further verification. OBJECTIVE:To explore the regulatory effect of ERK5 on the proliferation of MC3T3-E1 cells and related secreted proteins,and to further verify whether resveratrol can complete the above process by activating ERK5. METHODS:Mouse MC3T3-E1 preosteoblasts were treated with complete culture medium,XMD8-92(an ERK5 inhibitor),epidermal growth factor(an ERK5 activator),resveratrol alone,XMD8-92+EGF,and resveratrol+XMD8-92,respectively.Western blot assay was used to detect the expression of ERK5 and p-ERK5 proteins,proliferation-related proteins Cyclin D1,CDK4 and PCNA,and osteoblast-secreted proteins osteoprotegerin and receptor activator of nuclear factor-κB ligand in MC3T3-E1 cells of each group.The fluorescence intensity of ERK5,osteoprotegerin and receptor activator of nuclear factor-κB ligand in each group was detected by cell immunofluorescence staining,and cell proliferation was detected by EdU staining,respectively.The appropriate concentration and time of resveratrol intervention in MC3T3-E1 cells were determined by cell morphology observation and cell counting kit-8 assay. RESULTS AND CONCLUSION:The activation of ERK5 signaling protein could effectively promote the proliferation of MC3T3-E1 cells,up-regulate the osteoprotegerin/receptor activator of nuclear factor-κB ligand ratio.The appropriate concentration and time for resveratrol intervention in MC3T3-E1 cells was 5 μmol/L and 24 hours,respectively.Resveratrol could activate ERK5 signaling protein,thereby promoting osteoblast proliferation and up-regulating the osteoprotegerin/RANKL ratio.All these results indicate that resveratrol can promote the proliferation of MC3T3-E1 cells and up-regulate the osteoprotegerin/RANKL ratio by activating the ERK5 signaling protein.
2.The Ferroptosis-inducing Compounds in Triple Negative Breast Cancer
Xin-Die WANG ; Da-Li FENG ; Xiang CUI ; Su ZHOU ; Peng-Fei ZHANG ; Zhi-Qiang GAO ; Li-Li ZOU ; Jun WANG
Progress in Biochemistry and Biophysics 2025;52(4):804-819
Ferroptosis, a programmed cell death modality discovered and defined in the last decade, is primarily induced by iron-dependent lipid peroxidation. At present, it has been found that ferroptosis is involved in various physiological functions such as immune regulation, growth and development, aging, and tumor suppression. Especially its role in tumor biology has attracted extensive attention and research. Breast cancer is one of the most common female tumors, characterized by high heterogeneity and complex genetic background. Triple negative breast cancer (TNBC) is a special type of breast cancer, which lacks conventional breast cancer treatment targets and is prone to drug resistance to existing chemotherapy drugs and has a low cure rate after progression and metastasis. There is an urgent need to find new targets or develop new drugs. With the increase of studies on promoting ferroptosis in breast cancer, it has gradually attracted attention as a treatment strategy for breast cancer. Some studies have found that certain compounds and natural products can act on TNBC, promote their ferroptosis, inhibit cancer cells proliferation, enhance sensitivity to radiotherapy, and improve resistance to chemotherapy drugs. To promote the study of ferroptosis in TNBC, this article summarized and reviewed the compounds and natural products that induce ferroptosis in TNBC and their mechanisms of action. We started with the exploration of the pathways of ferroptosis, with particular attention to the System Xc--cystine-GPX4 pathway and iron metabolism. Then, a series of compounds, including sulfasalazine (SAS), metformin, and statins, were described in terms of how they interact with cells to deplete glutathione (GSH), thereby inhibiting the activity of glutathione peroxidase 4 (GPX4) and preventing the production of lipid peroxidases. The disruption of the cellular defense against oxidative stress ultimately results in the death of TNBC cells. We have also our focus to the realm of natural products, exploring the therapeutic potential of traditional Chinese medicine extracts for TNBC. These herbal extracts exhibit multi-target effects and good safety, and have shown promising capabilities in inducing ferroptosis in TNBC cells. We believe that further exploration and characterization of these natural compounds could lead to the development of a new generation of cancer therapeutics. In addition to traditional chemotherapy, we discussed the role of drug delivery systems in enhancing the efficacy and reducing the toxicity of ferroptosis inducers. Nanoparticles such as exosomes and metal-organic frameworks (MOFs) can improve the solubility and bioavailability of these compounds, thereby expanding their therapeutic potential while minimizing systemic side effects. Although preclinical data on ferroptosis inducers are relatively robust, their translation into clinical practice remains in its early stages. We also emphasize the urgent need for more in-depth and comprehensive research to understand the complex mechanisms of ferroptosis in TNBC. This is crucial for the rational design and development of clinical trials, as well as for leveraging ferroptosis to improve patient outcomes. Hoping the above summarize and review could provide references for the research and development of lead compounds for the treatment for TNBC.
3.The Role of AMPK in Diabetic Cardiomyopathy and Related Intervention Strategies
Fang-Lian LIAO ; Xiao-Feng CHEN ; Han-Yi XIANG ; Zhi XIA ; Hua-Yu SHANG
Progress in Biochemistry and Biophysics 2025;52(10):2550-2567
Diabetic cardiomyopathy is a distinct form of cardiomyopathy that can lead to heart failure, arrhythmias, cardiogenic shock, and sudden death. It has become a major cause of mortality in diabetic patients. The pathogenesis of diabetic cardiomyopathy is complex, involving increased oxidative stress, activation of inflammatory responses, disturbances in glucose and lipid metabolism, accumulation of advanced glycation end products (AGEs), abnormal autophagy and apoptosis, insulin resistance, and impaired intracellular Ca2+ homeostasis. Recent studies have shown that adenosine monophosphate-activated protein kinase (AMPK) plays a crucial protective role by lowering blood glucose levels, promoting lipolysis, inhibiting lipid synthesis, and exerting antioxidant, anti-inflammatory, anti-apoptotic, and anti-ferroptotic effects. It also enhances autophagy, thereby alleviating myocardial injury under hyperglycemic conditions. Consequently, AMPK is considered a key protective factor in diabetic cardiomyopathy. As part of diabetes prevention and treatment strategies, both pharmacological and exercise interventions have been shown to mitigate diabetic cardiomyopathy by modulating the AMPK signaling pathway. However, the precise regulatory mechanisms, optimal intervention strategies, and clinical translation require further investigation. This review summarizes the role of AMPK in the prevention and treatment of diabetic cardiomyopathy through drug and/or exercise interventions, aiming to provide a reference for the development and application of AMPK-targeted therapies. First, several classical AMPK activators (e.g., AICAR, A-769662, O-304, and metformin) have been shown to enhance autophagy and glucose uptake while inhibiting oxidative stress and inflammatory responses by increasing the phosphorylation of AMPK and its downstream target, mammalian target of rapamycin (mTOR), and/or by upregulating the gene expression of glucose transporters GLUT1 and GLUT4. Second, many antidiabetic agents (e.g., teneligliptin, liraglutide, exenatide, semaglutide, canagliflozin, dapagliflozin, and empagliflozin) can promote autophagy, reverse excessive apoptosis and autophagy, and alleviate oxidative stress and inflammation by enhancing AMPK phosphorylation and its downstream targets, such as mTOR, or by increasing the expression of silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor‑α (PPAR‑α). Third, certain anti-anginal (e.g., trimetazidine, nicorandil), anti-asthmatic (e.g., farrerol), antibacterial (e.g., sodium houttuyfonate), and antibiotic (e.g., minocycline) agents have been shown to promote autophagy/mitophagy, mitochondrial biogenesis, and inhibit oxidative stress and lipid accumulation via AMPK phosphorylation and its downstream targets such as protein kinase B (PKB/AKT) and/or PPAR‑α. Fourth, natural compounds (e.g., dihydromyricetin, quercetin, resveratrol, berberine, platycodin D, asiaticoside, cinnamaldehyde, and icariin) can upregulate AMPK phosphorylation and downstream targets such as AKT, mTOR, and/or the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), thereby exerting anti-inflammatory, anti-apoptotic, anti-pyroptotic, antioxidant, and pro-autophagic effects. Fifth, moderate exercise (e.g., continuous or intermittent aerobic exercise, aerobic combined with resistance training, or high-intensity interval training) can activate AMPK and its downstream targets (e.g., acetyl-CoA carboxylase (ACC), GLUT4, PPARγ coactivator-1α (PGC-1α), PPAR-α, and forkhead box protein O3 (FOXO3)) to promote fatty acid oxidation and glucose uptake, and to inhibit oxidative stress and excessive mitochondrial fission. Finally, the combination of liraglutide and aerobic interval training has been shown to activate the AMPK/FOXO1 pathway, thereby reducing excessive myocardial fatty acid uptake and oxidation. This combination therapy offers superior improvement in cardiac dysfunction, myocardial hypertrophy, and fibrosis in diabetic conditions compared to liraglutide or exercise alone.
4.Preparation modification strategies for clinical treatment drugs of Parkinson's disease
Meng-jiao HE ; Yi-fang XIAO ; Xiang-an-ni KONG ; Zhi-hao LIU ; Xiao-guang WANG ; Hao FENG ; Jia-sheng TU ; Qian CHEN ; Chun-meng SUN
Acta Pharmaceutica Sinica 2024;59(3):574-580
Parkinson's disease (PD) is a chronic neurodegenerative disease. At present, levodopa and other drugs are mainly used for dopamine supplementation therapy. However, the absorption of levodopa in the gastrointestinal tract is unstable and its half-life is short, and long-term use of levodopa will lead to the end-of-dose deterioration, dyskinesia, the "ON-OFF" phenomenon and other symptoms. Therefore, new preparations need to be developed to improve drug efficacy, reduce side effects or improve compliance of patients. Based on the above clinical needs, this review briefly introduced the preparation modification strategies for the treatment of PD through case analysis, in order to provide references for the research and development of related preparations.
5.Characteristics of abnormal coronary aorta origin in adults and cause analysis of missed diagnosis by transthoracic echocardiography
Si-Yang ZUO ; Sen LI ; You-Xiang KANG ; Xiao-Ling ZHAO ; Li-Xing WANG ; Rui CHEN ; Zhi-Yu FENG
Chinese Medical Equipment Journal 2024;45(1):71-75
Objective To analyze the characteristics of adult anomalous aortic origin of coronary artery(AAOCA)and the causes of missed diagnosis by transthoracic echocardiography(TTE)so as to facilitate TTE in diagnosing adult AAOCA.Methods A total of 37 adult patients with AAOCA diagnosed by non-invasive coronary CT angiography(CCTA)and/or invasive coronary angiography(ICA)were selected as research samples at some hospital from January 2019 to December 2022,and their clinical symptoms and the findings of 12-lead electrocardiogram,cardiac enzymes and TTE were summarized;the patients were typed according to the site of origin of coronary artery anomalies,and the causes for the missed diagnosis of TTE were eplored.Chi-square test was used to compare the differences in TTE missed diagnoses.Results Of the 37 patients,31 ones had no or only mild symptoms;most ones had negative results in terms of 12-lead electrocardiography,cardiac enzymes,changes in the size of the cardiac chambers,segmental ventricular wall motion abnormalities and left ventricular systolic function.The patients with anomalous origin of the right coronary artery from left sinus(ARCA-L)gained the largest proportion of 59.45%(22/37);21 patients were diagnosed with anomalous origin of coronary artery arising from the opposite sinus(ACAOS)in the two examinations of TTE,of whom there were 19 cases of ARCA-L,and the detection rate of ACAOS by TTE was 87.5%;all the 13 patients origins in branches and high-grade openings were missed by TTE.The detection rate of ACAOS by TTE was significantly higher than that of coronary artery anomalies originating in branches and in high openings,and the difference was statistically significant(21/24 vs 0/13,P<0.001).Conclusion Most adult AAOCA patients lack specificity in symptoms and related examination results.TTE has a high detection rate of ACAOS,while it is easy to miss the diagnosis of coronary artery anomalies originating from branches and high openings.Ultrasonographers have to identify false negative AAOCA by multi-section and multi-angle scanning and color Doppler flow imaging in order to reduce the rate of missed diagnosis.[Chinese Medical Equipment Journal,2024,45(1):71-75]
6.Glycyrrhizic Acid Showed Therapeutic Effects on Severe Pulmonary Damages in Mice Induced by Pneumonia Virus of Mice Infection
Yun LIU ; Tingting FENG ; Wei TONG ; Zhi GUO ; Xia LI ; Qi KONG ; Zhiguang XIANG
Laboratory Animal and Comparative Medicine 2024;44(3):251-258
Objective In this study,inbred BALB/c mice infected with the pneumonia virus of mice(PVM)were used to establish an animal model of viral pneumonia,and the changes in the pro-inflammatory alarmin molecule,high mobility group box 1 protein(HMGB1),during PVM infection were observed,as well as the in vivo intervention effects of the HMGB1 inhibitor,glycyrrhizic acid(GA),on PVM-induced lung injury.Methods Three-week-old female BALB/c mice were randomly divided into three groups,each consisting of 6 mice.One group,uninfected by PVM,served as the control group(Control).The other two groups were inoculated intranasally with PVM at a dose of 1×104 50%tissue culture infective dose(TCID50)/25 μL,and subsequently treated with GA saline solution(GA group)or plain saline solution(normal saline,NS group)via gavage for 15 consecutive days.During this period,changes in body weight and appearance were monitored in each group.At the end of the experiment,lung tissue samples were collected from all groups.The distribution of PVM and HMGB1 proteins in the lung tissues was analyzed using hematoxylin-eosin staining and immunohistochemistry.The expression levels of HMGB1 and its Toll-like receptor 4(TLR-4),advanced glycosylation end-product-specific receptor(AGER),and inflammatory cytokines such as interleukin(IL)-1β,IL-2,and tumor necrosis factor-α(TNF-α)in lung tissues of mice were measured using real time fluorescence quantitative PCR.Results Compared with the Control group,the NS group showed a significant weight loss after 6 days(P<0.05).Histopathological tests revealed pronounced inflammatory lesions in their lungs.Immunohistochemistry results showed that HMGB1 was released from the nucleus to the cytoplasm,and real time fluorescence quantitative PCR results indicated that the expression levels of HMGB1,IL-1β,and IL-2 were significantly upregulated(P<0.05).In the GA group,there was no significant change in the clinical symptoms or body weight.However,compared with the NS group,the pathological damages of lung tissues in the GA group were significantly reduced,and the expression levels of HMGB1,IL-1 β,IL-2,and interferon-γ(IFN-γ)in lung tissues were also significantly decreased(P<0.05),although the expression level of AGER was significantly increased(P<0.05).Conclusion PVM infection can cause significant inflammatory pathological lung damages in mice,and GA can effectively alleviate the damages.Its therapeutic effect may be related to the activation of HMGB1 signaling pathway.
7.Effects of Tuina targeting different body parts on the behaviors and gut microflora of autistic spectrum disorder rat models
Tao LI ; Xiang FENG ; Hui ZHI ; Wentao HUANG ; Jiangshan LI ; Wu LI
Digital Chinese Medicine 2024;7(1):90-100
Objective To investigate the effects of Tuina targeting different body parts on the behaviors and gut microflora of rat models with valproic acid(VPA)-induced autistic spectrum disorder(ASD). Methods Twenty female Sprague Dawley(SD)rats with 12.5 d of pregnancy were randomly divided into VPA model group[intraperitoneal injection of VPA(600 mg/kg),n=15]and saline group(intraperitoneal injection of equal amount of normal saline,n=5).The offspring male rats injected with saline were secleted as control group.The offspring male rats injected with VPA were randomly divided into VPA,dorsal,and abdominal groups(n=7 in each group).On the 21st day after birth,three-chamber social test,open field test,and marble-burying test were carried out to observe the social abilities,anxiety behaviors,and stereotypi-cal behaviors of rats in the four groups.Rats in dorsal and abdominal groups underwent Tuina for 14 d,twice a day.On the 35th day,behavioral tests were conducted again,and in-testinal contents were taken for species composition and structural analysis,as well as mark-er and differential species analysis. Results(i)According to behavioral observations,compared with VPA group,the social and movement time in the central open field of rats in dorsal group increased significantly(P<0.05),and the number of buried marbles decreased markedly(P<0.01),indicating improve-ment on their social abilities,anxiety behaviors,and stereotypical behaviors as consequences of dorsal Tuina;and the number of buried marbles was reduced as well in abdominal group when compared with VPA group(P<0.05),suggesting the improvement on their stereotypi-cal behaviors following abdominal Tuina.In the marble-burying test,the number of marbles buried in dorsal group was less than in abdominal group,and the stereotypical behaviors were improved more significantly(P<0.05),and there were no significant differences in the three-chamber social and open field tests between the two groups(P>0.05).(ii)In accor-dance with intestinal microflora detection results,compared with VPA group,both dorsal and abdominal groups showed increased richness(P<0.05)and elevated diversity(P<0.05 in dorsal group and P<0.01 in abdominal group)in intestinal microflora.The results of differen-tial analysis indicated that at the phylum level,compared with VPA group,the relative abun-dance of Firmicutes in rats in abdominal group showed a significant reduction trend(P<0.05);at the genus level,compared with VPA group,the relative abundance of Lactobacillus in rats in dorsal and abdominal groups decreased significantly(P<0.05).Dorsal group also showed significant increase in the genus Blautia in the analysis of marker species compared with VPA group(P<0.05). Conclusion Tuina impacted the behavior and gut microflora structure of ASD model rats.Dorsal intervention had a significant effect on social abilities,anxiety behaviors,and stereo-typical behaviors of ASD model rats,while abdominal intervention only had an obvious effect on stereotypical behaviors.Both dorsal and abdominal interventions increased the richness and diversity of gut microflora of ASD model rats,with abdominal intervention improving the intestinal microbial diversity more significantly and resulting in a more uniform species dis-tribution.
8.Calcitonin gene-related peptide inhibits neuronal apoptosis in heatstroke rats via PKA/p-CREB pathway
Jie ZHU ; Ya-Hong CHEN ; Jing-Jing JI ; Cheng-Xiang LU ; Zhi-Feng LIU
Chinese Journal of Traumatology 2024;27(1):18-26
Purpose::The incidence of heatstroke (HS) is not particularly high; however, once it occurs, the consequences are serious. It is reported that calcitonin gene-related peptide (CGRP) is protective against brain injury in HS rats, but detailed molecular mechanisms need to be further investigated. In this study, we further explored whether CGRP inhibited neuronal apoptosis in HS rats via protein kinase A (PKA)/p-cAMP response element-binding protein (p-CREB) pathway.Methods::We established a HS rat model in a pre-warmed artificial climate chamber with a temperature of (35.5 ± 0.5) °C and a relative humidity of 60% ± 5%. Heatstress was stopped once core body temperature reaches above 41 °C. A total of 25 rats were randomly divided into 5 groups with 5 animals each: control group, HS group, HS+CGRP group, HS+CGRP antagonist (CGRP8-37) group, and HS+CGRP+PKA/p-CREB pathway blocker (H89) group. A bolus injection of CGRP was administered to each rat in HS+CGRP group, CGRP8-37 (antagonist of CGRP) in HS+CGRP8-37 group, and CGRP with H89 in HS+CGRP+H89 group. Electroencephalograms were recorded and the serum concentration of S100B, neuron-specific enolase (NSE), neuron apoptosis, activated caspase-3 and CGRP expression, as well as pathological morphology of brain tissue were detected at 2 h, 6 h, and 24 h after HS in vivo. The expression of PKA, p-CREB, and Bcl-2 in rat neurons were also detected at 2 h after HS in vitro. Exogenous CGRP, CGRP8-37, or H89 were used to determine whether CGRP plays a protective role in brain injury via PKA/p-CREB pathway. The unpaired t-test was used between the 2 samples, and the mean ± SD was used for multiple samples. Double-tailed p < 0.05 was considered statistically significant. Results::Electroencephalogram showed significant alteration of θ (54.50 ± 11.51 vs. 31.30 ± 8.71, F = 6.790, p = 0.005) and α wave (16.60 ± 3.21 vs. 35.40 ± 11.28, F = 4.549, p = 0.020) in HS group compared to the control group 2 h after HS. The results of triphosphate gap terminal labeling (TUNEL) showed that the neuronal apoptosis of HS rats was increased in the cortex (9.67 ± 3.16 vs. 1.80 ± 1.10, F= 11.002, p = 0.001) and hippocampus (15.73 ± 8.92 vs. 2.00 ± 1.00, F = 4.089, p = 0.028), the expression of activated caspase-3 was increased in the cortex (61.76 ± 25.13 vs. 19.57 ± 17.88, F = 5.695, p = 0.009) and hippocampus (58.60 ± 23.30 vs. 17.80 ± 17.62, F = 4.628, p = 0.019); meanwhile the expression of serum NSE (5.77 ± 1.78 vs. 2.35 ± 0.56, F = 5.174, p = 0.013) and S100B (2.86 ± 0.69 vs. 1.35 ± 0.34, F= 10.982, p = 0.001) were increased significantly under HS. Exogenous CGRP decreased the concentrations of NSE and S100B, and activated the expression of caspase-3 (0.41 ± 0.09 vs. 0.23 ± 0.04, F = 32.387, p < 0.001) under HS; while CGRP8-37 increased NSE (3.99 ± 0.47 vs. 2.40 ± 0.50, F = 11.991, p = 0.000) and S100B (2.19 ± 0.43 vs. 1.42 ± 0.30, F = 4.078, p = 0.025), and activated the expression caspase-3 (0.79 ± 0.10 vs. 0.23 ± 0.04, F= 32.387, p < 0.001). For the cell experiment, CGRP increased Bcl-2 (2.01 ± 0.73 vs. 2.15 ± 0.74, F= 8.993, p < 0.001), PKA (0.88 ± 0.08 vs. 0.37 ± 0.14, F= 20.370, p < 0.001), and p-CREB (0.87 ± 0.13 vs. 0.29 ± 0.10, F= 16.759, p < 0.001) levels; while H89, a blocker of the PKA/p-CREB pathway reversed the expression. Conclusions::CGRP can protect against HS-induced neuron apoptosis via PKA/p-CREB pathway and reduce activation of caspase-3 by regulating Bcl-2. Thus CGRP may be a new target for the treatment of brain injury in HS.
9.Application of the OmniLogTM microbial identification system in the detection of the host spectrum for wild-type plague phage in Qinghai Plateau
Cun-Xiang LI ; Zhi-Zhen QI ; Qing-Wen ZHANG ; Hai-Hong ZHAO ; Long MA ; Pei-Song YOU ; Jian-Guo YANG ; Hai-Sheng WU ; Jian-Ping FENG
Chinese Journal of Zoonoses 2024;40(1):21-25
The growth of three plague phages from Qinghai Plateau in two Yersinia pestis strains(plague vaccine strains EV76 and 614F)and four non-Yersinia pestis strains(Yersinia pseudotuberculosis PTB3,PTB5,Escherichia coli V517,and Yersinia enterocolitica 52302-2)were detected through a micromethod based on the OmniLogTM microbial identification system and by the drop method,to provide a scientific basis for future ecological studies and classification based on the host range.For plague vaccine strains EV76 and 614F,successful phage infection and subsequent phage growth were observed in the host bacte-rium.Diminished bacterial growth and respiration and a concomitant decrease in color were observed with the OmniLogTM mi-crobial identification system at 33 ℃ for 48 h.Yersinia pseudotuberculosis PTB5 was sensitive to Yersinia pestis phage 476,but Yersinia pseudotuberculosis PST5 was insensitive to phage 087 and 072204.Three strains of non-Yersinia pestis(Yersinia pseudotuberculosis PTB3,Escherichia coli V517,and Yersinia enterocolitica 52302-2)were insensitive to Yersinia pestis pha-ges 087,072204,and 476 showed similar growth curves.The growth of phages 476 and 087,as determined with the drop method,in two Yersinia pestis strains(plague vaccine strains EV76 and 614F)and four non-Yersinia pestis strains(Yersinia pseudotuberculosis PTB3,Escherichia coli V517,and Yersin-ia enterocolitica 52302-2)showed the same results at 37 ℃,on the basis of comparisons with the OmniLogTM microbial i-dentification system;in contrast,phages 072204 did not show plaques on solid medium at 37 ℃ with plague vaccine strains EV76 and 614F.Determination based on the OmniLogTM detection system can be used as an alternative to the traditional determination of the host range,thus providing favorable application val-ue for determining the interaction between the phage and host bacteria.
10.Effect of exercise intensity on body components and CPET indexes of MS patients:A comparison of two prescribed programs
Ruojiang LIU ; Jinmei QIN ; Weizhen XUE ; Zhi LI ; Feng WANG ; Xiang ZHANG ; Hongyu LIU ; Zhiqiang PEI
The Journal of Practical Medicine 2024;40(19):2678-2684
Objective To compare the effects of two exercise intensities on metabolic syndrome(MS).Methods Forty-nine MS patients hospitalized in Taiyuan Central Hospital from December,2022 to January 2024 were selected and randomly divided into two groups:a standard group(n=24)and individual group(n=25).All patients underwent cardiopulmonary exercise test(CPET)before and after treatment,collecting major indexes including body parameter,body component,and metabolic indicator for prescribing exercise programs.The standard group was trained with exercise intensity prescribed on heart rate reserve,while the individual group received the exercise with intensity prescribed on ventilatory threshold.Both groups received equal energy consumption exercise intervention with the same exercise frequency for 12 weeks.Results The two groups demonstrated significant improvements in waist circumference(WC),body mass index(BMI),body fat related indexes,and systolic blood pressure after intervention(P<0.05).The individual group showed significant improvements inWC,BMI and body fat related indexes as compared to the standard group(P<0.05).Both groups showed significant improvements in peak oxygen uptake,(PeakVO2),peak load power(Peak WR),peak metabolic equivalent(PeakMets),and peak respiratory exchange ratio(Peak RER)after intervention(P<0.05).The individual group presented significant improvements in peak heart rate(HRpeak),peak oxygen pulse(Peak VO2/HR),and maximum voluntary ventilation(MVV)(P<0.05)after intervention.Before intervention,the standard group demonstrated significantly higher levels in PeakVO2 and Peak MET compared to the individual group(P<0.05),but after intervention the two groups showed no significant differences in the two indexes.After the intervention,the individual group demonstrated insignificant improvements in all indexes compared to the standard group(P>0.05).Conclusions Both exercise prescriptions based on CPET can effectively improve the health-related indicators of MS patients on condition of moderate exercise intensity.However,the program prescribed based on individualized ventilatory threshold shows superiority to the program prescribed based on maximum physiological value in improving these indicators.

Result Analysis
Print
Save
E-mail