1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Clinical and contrast-enhanced ultrasonographic characteristics of peripheral lung masses in patients infected with human immunodeficiency virus
Lei ZHAO ; Jingjing HUANG ; Xin MA ; Xia SHI ; Dou WU ; Zhi ZHANG ; Fengxiang SONG ; Jianjian LIU
Chinese Journal of Clinical Medicine 2025;32(2):276-282
Objective To evaluate the clinical characteristics of human immunodeficiency virus (HIV) infected patients with peripheral lung masses (PLMs), and to assess the diagnostic utility of contrast-enhanced ultrasound (CEUS) in differentiating benign and malignant PLMs. Methods A retrospective analysis was performed on the clinical data of 69 patients with PLM treated in Shanghai Public Health Clinical Center from January 2020 to December 2023. All patients underwent percutaneous biopsy, and were categorized into benign group (n=36) and malignant group (n=33). 25 patients were HIV-positive and 44 patients were HIV-negative. The clinical features and CEUS parameters in patients were compared across these groups. Results Patients with malignant masses were significantly older than those with benign masses (P<0.05). In the malignant group, HIV-negative patients exhibited significantly larger tumor diameters compared to HIV-positive patients (P<0.05); in the HIV-positive patients, no significant difference in tumor size was observed between benign and malignant masses. 19 patients underwent CEUS. 10 malignant masses, irrespective of HIV status (10 positive and 9 negative), commonly presented with indistinct margins, delayed enhancement, heterogeneous perfusion, and delayed peak enhancement on CEUS. 9 benign masses showed earlier peak enhancement compared to 10 malignant masses (P<0.05); no significant differences were observed in the initiation and washout time of enhancement between benign and malignant masses. In HIV-positive patients, 5 benign masses frequently demonstrated discrepancies between CEUS findings and pathological results. Conclusions The clinical and CEUS characteristics were different between benign and malignant PLMs. However, CEUS shows limited accuracy in distinguishing benign and malignant PLMs, underscoring the need for pathological confirmation.
3.Research on BP Neural Network Method for Identifying Cell Suspension Concentration Based on GHz Electrochemical Impedance Spectroscopy
An ZHANG ; A-Long TAO ; Qi-Hang RAN ; Xia-Yi LIU ; Zhi-Long WANG ; Bo SUN ; Jia-Feng YAO ; Tong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1302-1312
ObjectiveThe rapid advancement of bioanalytical technologies has heightened the demand for high-throughput, label-free, and real-time cellular analysis. Electrochemical impedance spectroscopy (EIS) operating in the GHz frequency range (GHz-EIS) has emerged as a promising tool for characterizing cell suspensions due to its ability to rapidly and non-invasively capture the dielectric properties of cells and their microenvironment. Although GHz-EIS enables rapid and label-free detection of cell suspensions, significant challenges remain in interpreting GHz impedance data for complex samples, limiting the broader application of this technique in cellular research. To address these challenges, this study presents a novel method that integrates GHz-EIS with deep learning algorithms, aiming to improve the precision of cell suspension concentration identification and quantification. This method provides a more efficient and accurate solution for the analysis of GHz impedance data. MethodsThe proposed method comprises two key components: dielectric property dataset construction and backpropagation (BP) neural network modeling. Yeast cell suspensions at varying concentrations were prepared and separately introduced into a coaxial sensor for impedance measurement. The dielectric properties of these suspensions were extracted using a GHz-EIS dielectric property extraction method applied to the measured impedance data. A dielectric properties dataset incorporating concentration labels was subsequently established and divided into training and testing subsets. A BP neural network model employing specific activation functions (ReLU and Leaky ReLU) was then designed. The model was trained and tested using the constructed dataset, and optimal model parameters were obtained through this process. This BP neural network enables automated extraction and analytical processing of dielectric properties, facilitating precise recognition of cell suspension concentrations through data-driven training. ResultsThrough comparative analysis with conventional centrifugal methods, the recognized concentration values of cell suspensions showed high consistency, with relative errors consistently below 5%. Notably, high-concentration samples exhibited even smaller deviations, further validating the precision and reliability of the proposed methodology. To benchmark the recognition performance against different algorithms, two typical approaches—support vector machines (SVM) and K-nearest neighbor (KNN)—were selected for comparison. The proposed method demonstrated superior performance in quantifying cell concentrations. Specifically, the BP neural network achieved a mean absolute percentage error (MAPE) of 2.06% and an R² value of 0.997 across the entire concentration range, demonstrating both high predictive accuracy and excellent model fit. ConclusionThis study demonstrates that the proposed method enables accurate and rapid determination of unknown sample concentrations. By combining GHz-EIS with BP neural network algorithms, efficient identification of cell concentrations is achieved, laying the foundation for the development of a convenient online cell analysis platform and showing significant application prospects. Compared to typical recognition approaches, the proposed method exhibits superior capabilities in recognizing cell suspension concentrations. Furthermore, this methodology not only accelerates research in cell biology and precision medicine but also paves the way for future EIS biosensors capable of intelligent, adaptive analysis in dynamic biological research.
4.Criteria and prognostic models for patients with hepatocellular carcinoma undergoing liver transplantation
Meng SHA ; Jun WANG ; Jie CAO ; Zhi-Hui ZOU ; Xiao-ye QU ; Zhi-feng XI ; Chuan SHEN ; Ying TONG ; Jian-jun ZHANG ; Seogsong JEONG ; Qiang XIA
Clinical and Molecular Hepatology 2025;31(Suppl):S285-S300
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated death globally. Liver transplantation (LT) has emerged as a key treatment for patients with HCC, and the Milan criteria have been adopted as the cornerstone of the selection policy. To allow more patients to benefit from LT, a number of expanded criteria have been proposed, many of which use radiologic morphological characteristics with larger and more tumors as surrogates to predict outcomes. Other groups developed indices incorporating biological variables and dynamic markers of response to locoregional treatment. These expanded selection criteria achieved satisfactory results with limited liver supplies. In addition, a number of prognostic models have been developed using clinicopathological characteristics, imaging radiomics features, genetic data, and advanced techniques such as artificial intelligence. These models could improve prognostic estimation, establish surveillance strategies, and bolster long-term outcomes in patients with HCC. In this study, we reviewed the latest findings and achievements regarding the selection criteria and post-transplant prognostic models for LT in patients with HCC.
5.Criteria and prognostic models for patients with hepatocellular carcinoma undergoing liver transplantation
Meng SHA ; Jun WANG ; Jie CAO ; Zhi-Hui ZOU ; Xiao-ye QU ; Zhi-feng XI ; Chuan SHEN ; Ying TONG ; Jian-jun ZHANG ; Seogsong JEONG ; Qiang XIA
Clinical and Molecular Hepatology 2025;31(Suppl):S285-S300
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated death globally. Liver transplantation (LT) has emerged as a key treatment for patients with HCC, and the Milan criteria have been adopted as the cornerstone of the selection policy. To allow more patients to benefit from LT, a number of expanded criteria have been proposed, many of which use radiologic morphological characteristics with larger and more tumors as surrogates to predict outcomes. Other groups developed indices incorporating biological variables and dynamic markers of response to locoregional treatment. These expanded selection criteria achieved satisfactory results with limited liver supplies. In addition, a number of prognostic models have been developed using clinicopathological characteristics, imaging radiomics features, genetic data, and advanced techniques such as artificial intelligence. These models could improve prognostic estimation, establish surveillance strategies, and bolster long-term outcomes in patients with HCC. In this study, we reviewed the latest findings and achievements regarding the selection criteria and post-transplant prognostic models for LT in patients with HCC.
6.Criteria and prognostic models for patients with hepatocellular carcinoma undergoing liver transplantation
Meng SHA ; Jun WANG ; Jie CAO ; Zhi-Hui ZOU ; Xiao-ye QU ; Zhi-feng XI ; Chuan SHEN ; Ying TONG ; Jian-jun ZHANG ; Seogsong JEONG ; Qiang XIA
Clinical and Molecular Hepatology 2025;31(Suppl):S285-S300
Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated death globally. Liver transplantation (LT) has emerged as a key treatment for patients with HCC, and the Milan criteria have been adopted as the cornerstone of the selection policy. To allow more patients to benefit from LT, a number of expanded criteria have been proposed, many of which use radiologic morphological characteristics with larger and more tumors as surrogates to predict outcomes. Other groups developed indices incorporating biological variables and dynamic markers of response to locoregional treatment. These expanded selection criteria achieved satisfactory results with limited liver supplies. In addition, a number of prognostic models have been developed using clinicopathological characteristics, imaging radiomics features, genetic data, and advanced techniques such as artificial intelligence. These models could improve prognostic estimation, establish surveillance strategies, and bolster long-term outcomes in patients with HCC. In this study, we reviewed the latest findings and achievements regarding the selection criteria and post-transplant prognostic models for LT in patients with HCC.
7.Role of O-sialoglycoprotein endopeptidase in hepatic ischemia-reperfusion injury in mice: relationship with oxidative stress
Tengjuan ZHANG ; Wanqing ZHOU ; Cheng CHEN ; Qian ZHANG ; Yanfei ZHAO ; Dehao HE ; Zhi YE ; Pingping XIA
Chinese Journal of Anesthesiology 2024;44(1):85-90
Objective:To evaluate the role of O-sialoglycoprotein endopeptidase (OSGEP) in hepatic ischemia-reperfusion injury (HIRI) and the relationship with oxidative stress in mice.Methods:Experiment Ⅰ Twenty-four SPF healthy male C57BL/6 mice, 12 wild-type and 12 OSGEP knockdown, aged 6-8 weeks, weighing 18-22 g, were divided into 4 groups ( n=6 each) by the random number table method: wild-type shamoperation group (Sham group), wild-type HIRI group (HIRI group), OSGEP knockdown+ sham operation group (Sham+ KD group) and OSGEP knockdown+ HIRI group (HIRI+ KD group). Ischemia-reperfusion model was prepared by blocking the hepatic artery and portal vein for 60 min followed by reperfusion in anesthetized animals, the blood vessels were only exposed without occlusion in Sham group and Sham+ KD group, and the blood vessels were clamped for 60 min followed by reperfusion in HIRI group and HIRI+ KD group. The mice were sacrificed after 6-h reperfusion to extract liver tissue samples for microscopic examination of histopathological changes (with an optical microscope after HE staining) which were evaluated using Suzuki score and for determination of the serum concentrations of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), level of reactive oxygen species (ROS) (using the DCFH-DA fluorescent probe method), contents of malondialdehyde (MDA) and glutathione(GSH) in liver tissues (using a colorimetric method) and expression of OSGEP (using Western blot). Experiment Ⅱ The well-growing AML12 cells were divided into 4 groups ( n=30 each) using a random number table method: control group (C group), oxygen-glucose deprivation/restoration (OGD/R) group, OGD/R+ OSGEP knockdown group (OGD/R+ KD group), and OGD/R+ OSGEP knockdown negative control group (OGD/R+ NC group). Group C was cultured under normal conditions. Group OGD/R was subjected to O 2-glucose deprivation for 6 h followed by restoration of O 2-glucose supply for 24 h in OGD/R group. In OGD/R+ KD group, stable transfection of AML12 cells with OSGEP knockdown was performed prior to the experiment, and the other procedures were the same as those previously described. The cell survival rate was measured by the CCK-8 assay, the release of lactate dehydrogenase (LDH) was measured, the DCFH-DA method was used to detect the levels of ROS, and the contents of MDA and GSH were determined using a colorimetric method. Results:Experiment Ⅰ Compared with Sham group, the expression of OSGEP was significantly down-regulated, the serum concentrations of AST and ALT, Suzuki score, levels of ROS and content of MDA were increased, and the GSH content was decreased in HIRI group ( P<0.05), and no significant change was found in each parameter in Sham+ KD group ( P>0.05). Compared with HIRI group, the serum concentrations of AST and ALT, Suzuki score, levels of ROS and content of MDA were significantly increased, and the GSH content was decreased in HIRI+ KD group ( P<0.05). Experiment Ⅱ Compared with group C, the expression of OSGEP was significantly down-regulated, the cell survival rate and GSH content were decreased, and the release of LDH, levels of ROS and content of MDA were increased in group OGD/R ( P<0.05). Compared with OGD/R group, the cell survival rate and GSH content were significantly decreased, and the release of LDH, levels of ROS and content of MDA were increased in OGD/R+ KD group ( P<0.05), and no significant change was found in each parameter in OGD/R+ NC group ( P>0.05). Conclusions:OSGEP plays an endogenous protective role in HIRI by inhibiting oxidative stress in mice.
8.Effects of Hedysarum polybotrys polysacchcaide on NF-κB/IKKβ signaling pathway in db/db mice with diabetic cardiomyopathy
Hua-Zhi ZHANG ; Zhi-Sheng JIN ; Jin-Ning SUN ; Jing SHAO ; Xiang-Xia LUO
The Chinese Journal of Clinical Pharmacology 2024;40(6):849-853
Objective To investigate the effect of hedysarum polysacchcaide(HPS)on nuclear transcription factor-κB(NF-κB)/IκB kinase β(IKKβ)signaling pathway in cardiac tissue of db/db mice with diabetic cardiomyopathy(DCM).Methods Altogether 60 7-week-old male db/db mice were randomly divided into model group,control group and experimental-H,-M,-L groups,with 12 mice in each group.In addition,12 db/m mice of the same week age were selected as the normal group.Normal group and model group were given 0.9%NaCl by intragastric administration.Experimental-L,-M,-H groups were given 50,100 and 200 mg·kg-1 HPS suspension by intragastriction,respectively.Control group was given 4 mg·kg-1 rosiglitazone suspension by intragastric administration.Six groups of rats were given the drug once a day for 8 weeks.The contents of tumor necrosis factor-α(TNF-α)and interleukin-6(IL-6)in myocardial tissue were detected by enzyme-linked immunosorbent assay.The mRNA expression levels of NF-κB and IKKβ in myocardial tissue were detected by real-time fluorescence quantitative polymerase chain reaction.The correlation between the expression of NF-κB protein and the content of TNF-α and IL-6 was analyzed.Results The contents of IL-6 in myocardial tissue of normal,model,control and experimental-H groups were(1.24±0.54),(7.72±0.24),(2.90±0.50)and(2.78±0.56)ng·L-1;the contents of TNF-α were(1.96±0.52),(5.25±0.72),(2.84±0.86)and(2.82±0.58)ng·L-1;the mRNA expression levels of NF-κB were I.00±0.00,3.35±0.81,2.05±0.44 and 1.67±0.22;the mRNA expression levels of IKKβ were 1.00±0.00,2.92±0.07,1.51±0.07 and 1.41±0.08,respectively.Compared with the model group,the above indexes of the control and experimental-H groups were statistically significant(P<0.01,P<0.05).The expression of NF-κB protein was positively correlated with the content of IL-6 and TNF-α,and the correlation coefficients were 0.866 and 0.740(all P<0.01).Conclusion HPS can alleviate the damage of myocardial pathology in mice,reduce myocardial collagen deposition and fibrosis,its mechanism may be through regulating the expression of NF-κB/IKKβ signaling pathway to play a role in inhibiting the inflammatory reaction.
9.Inhibitory effects of toosendanin on in vitro and in vivo growth of lung adenocarcinoma cells by regulating CDCA5 expression
Zhi-Cheng ZHANG ; Li-Xia SU ; Rui-Ling MENG ; Wen-Juan GUAN ; Hong-Qian LI
The Chinese Journal of Clinical Pharmacology 2024;40(7):994-998
Objective To investigate the inhibitory effect of toosendanin on the growth of lung adenocarcinoma cells in vitro and in vivo by regulating the expression of cell division cycle associated protein 5(CDCA5).Methods The expression of CDCA5 in different lung tissues was analyzed in TCGA database.The expression level of CDCA5 in BEAS-2B cells and A549 cells was detected by Western blot.The effect of different concentrations of toosendanin on the viability of A549 cells was determined by cell counting kit-8(CCK-8)assay.The A549 cells were randomly divided into 4 groups:control group(normal cells cultured normally),toosendanin group(normal cells cultured with 40 μmol·L-1 toosendanin),toosendanin+pcDNA group(cells transfected with pcDNA empty vector and cultured with 40 μmol·L-1 toosendanin),and toosendanin+CDCA5 group(cells transfected with CDCA5 overexpression vector and cultured with 40 μmol·L-1 toosendanin).After 48 h of cultivation,the proliferation and apoptosis of each group of cells were detected by CCK-8 and flow cytometry,and the expression of proliferation and apoptosis related proteins in each group of cells was detected by Western blot.The BALB/c nude mice were randomly divided into sh-NC and sh-CDCA5 stable transfected cell lines with nude mouse xenograft models.Daily intraperitoneal injection of 0.9%NaCl and 40μmol·L-1 toosendanin solution was given to observe and record the changes in tumor tissue volume and body mass.Results The results of CCK-8 showed that after 48 hours,the survival rates of A549 cells treated with 10,20,30,40,50,60 and 70 μmol·L-1 toosendanin were(80.74±8.71)%,(72.96±6.53)%,(61.01±4.86)%,(51.20±3.13)%,(42.10±5.94)%,(38.93±3.18)%and(33.48±2.94)%,respectively.Toosendanin significantly inhibited the proliferation of A549 cells.The proliferation rates of cells in the control group,toosendanin group,toosendanin+pcDNA group,and toosendanin+CDCA5 group were(100.00±4.19)%,(49.18±6.70)%,(55.75±5.74)%,and(77.66±7.48)%,respectively;the expression levels of CDCA5 protein were 1.08±0.11,0.44±0.04,0.43±0.05 and 0.99±0.10,respectively.The expression levels of CDCA5 protein in tumor tissues of nude mice in the sh-NC group,sh-CDCA5 group,toosendanin+sh-NC group,and toosendanin+sh-CDCA5 group were 1.04±0.14,0.42±0.04,0.56±0.08 and 0.32±0.04,respectively.Compared with the sh-NC group,the tumor blocks formed by nude mice in other groups were significantly smaller,and the tumor volume and weight were significantly lower(all P<0.05).Compared with the toosendanin+sh-NC group,the toosendanin+sh-CDCA5 group had more significant inhibitory effect on tumor formation,and the difference was statistically significant(P<0.05).Conclusion Toosendanin can inhibit the growth of lung adenocarcinoma cells in vitro and in vivo,which is mainly related to the inhibition of CDCA5 expression.
10.Effects of radiation on pharmacokinetics
Jie ZONG ; Hai-Hui ZHANG ; Gui-Fang DOU ; Zhi-Yun MENG ; Ruo-Lan GU ; Zhuo-Na WU ; Xiao-Xia ZHU ; Xuan HU ; Hui GAN
The Chinese Journal of Clinical Pharmacology 2024;40(13):1996-2000
Radiation mainly comes from medical radiation,industrial radiation,nuclear waste and atmospheric ultraviolet radiation,etc.,radiation is divided into ionizing radiation and non-ionizing radiation.Studying the effects of ionizing and non-ionizing radiation on drug metabolism,understanding the absorption and distribution of drugs in the body after radiation and the speed of elimination under radiation conditions can provide reasonable guidance for clinical medication.This article reviews the effects of radiation on the pharmacokinetics of different drugs,elaborates the changes of different pharmacokinetics under radiation state,and discusses the reasons for the changes.

Result Analysis
Print
Save
E-mail