1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Efficacy and safety of oliceridine for treatment of moderate to severe pain after surgery with general anesthesia: a prospective, randomized, double-blinded, multicenter, positive-controlled clinical trial
Gong CHEN ; Wen OUYANG ; Ruping DAI ; Xiaoling HU ; Huajing GUO ; Haitao JIANG ; Zhi-Ping WANG ; Xiaoqing CHAI ; Chunhui WANG ; Zhongyuan XIA ; Ailin LUO ; Qiang WANG ; Ruifeng ZENG ; Yanjuan HUANG ; Zhibin ZHAO ; Saiying WANG
Chinese Journal of Anesthesiology 2024;44(2):135-139
Objective:To evaluate the efficacy and safety of oliceridine for treatment of moderate to severe pain after surgery with general anesthesia in patients.Methods:The patients with moderate to severe pain (numeric pain rating scale ≥4) after abdominal surgery with general anesthesia from 14 hospitals between July 6, 2021 and November 9, 2021 were included in this study. The patients were assigned to either experiment group or control group using a random number table method. Experiment group received oliceridine, while control group received morphine, and both groups were treated with a loading dose plus patient-controlled analgesia and supplemental doses for 24 h. The primary efficacy endpoint was the drug response rate within 24 h after giving the loading dose. Secondary efficacy endpoints included early (within 1 h after giving the loading dose) drug response rates and use of rescue medication. Safety endpoints encompassed the development of respiratory depression and other adverse reactions during treatment.Results:After randomization, both the full analysis set and safety analysis set comprised 180 cases, with 92 in experiment group and 88 in control group. The per-protocol set included 170 cases, with 86 in experiment group and 84 in control group. There were no statistically significant differences between the two groups in 24-h drug response rates, rescue analgesia rates, respiratory depression, and incidence of other adverse reactions ( P>0.05). The analysis of full analysis set showed that the experiment group had a higher drug response rate at 5-30 min after giving the loading dose compared to control group ( P<0.05). The per-protocol set analysis indicated that experiment group had a higher drug response rate at 5-15 min after giving the loading dose than control group ( P<0.05). Conclusions:When used for treatment of moderate to severe pain after surgery with general anesthesia in patients, oliceridine provides comparable analgesic efficacy to morphine, with a faster onset.
3.Application of CRISPR/Cas-based Electrochemical Biosensors for Tumor Detection
Shuang LI ; Zhi CHEN ; Yun-Xia HUANG ; Guo-Jun ZHAO ; Ting JIANG
Progress in Biochemistry and Biophysics 2024;51(8):1771-1787
Tumors represent one of the primary threats to human life, with the dissemination of malignant tumors being a leading cause of mortality among cancer patients. Early diagnosis of tumors can reliably predict their progression, significantly reducing mortality rates. Tumor markers, including circulating tumor cells, exosomes, proteins, circulating tumor DNA, miRNAs and so on, generated during the tumor development process, have emerged as effective approach for early tumor diagnosis. Several methods are currently employed to detect tumor markers, such as polymerase chain reaction, Northern blotting, next-generation sequencing, flow cytometry, and enzyme-linked immunosorbent assay. However, these methods often suffer from time-consuming process, high costs, low sensitivity, and the requirement for specialized personnel. Therefore, a new rapid, sensitive, and specific tumor detection method is urgently needed.The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system, originating from the adaptive immune system of bacteria, has found extensive applications in gene editing and nucleic acid detection. Based on the structure and function of Cas proteins, the CRISPR/Cas system can be classified into two classes and six types. Class I systems consist of multiple Cas protein complexes, including types I, III, and IV, while Class II systems comprise single, multi-domain Cas proteins mediated by RNA, including types II (Cas9), V (Cas12), and VI (Cas13). Class II systems have been widely employed in the fields of biotechnology and nucleic acid diagnostics due to their efficient target binding and programmable RNA specificity. Currently, fluorescence method is the most common signal output technique in CRISPR/Cas-based biosensors. However, this method often requires the integration of signal amplification technologies to enhance sensitivity and involves expensive and complex fluorescence detectors. To enhance the detection performance of CRISPR/Cas-based biosensors, the integration of CRISPR/Cas with some alternative techniques can be considered. The CRISPR/Cas integrated electrochemical sensor (E-CRISPR) possesses advantages such as miniaturization, high sensitivity, high specificity, and fast response speed.E-CRISPR can convert the reactions between biomolecules and detecting components into electrical signals, rendering the detection signals more easily readable and reducing the impact of background values. Therefore,E-CRISPR enhances the accuracy of detection results. E-CRISPR has been applied in various fields, including medical and health, environmental monitoring, and food safety. Furthermore, E-CRISPR holds tremendous potential for advancing the detection levels of tumor markers.Among all types of Cas enzymes, the three most widely applied are Cas9, Cas12, and Cas13, along with their respective subtypes. In this work, we provided a brief overview of the principles and characteristics of Class II CRISPR/Cas single-effector proteins. This paper focused on the various detection technologies based on E-CRISPR technique, including electrochemical impedance spectroscopy, voltammetry, photoelectrochemistry, and electrochemiluminescence. We also emphasized the applications of E-CRISPR in the field of tumor diagnosis, which mainly encompasses the detection of three typical tumor markers (ctDNA, miRNA, and proteins). Finally, we discussed the advantages and limitations of E-CRISPR, current challenges, and future development prospects. In summary, althoughE-CRISPR platform has made significant strides in tumor detection, certain challenges still need to be overcome for their widespread clinical application. Continuous optimization of the E-CRISPR platform holds the promise of achieving more accurate tumor subtyping diagnoses in clinical settings, which would be of significant importance for early patient diagnosis and prognosis assessment.
4.Application Study of Enzyme Inhibitors and Their Conformational Optimization in The Treatment of Alzheimer’s Disease
Chao-Yang CHU ; Biao XIAO ; Jiang-Hui SHAN ; Shi-Yu CHEN ; Chu-Xia ZHANG ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Zhi-Cheng LIN ; Kai XIE ; Shu-Jun XU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2024;51(7):1510-1529
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive dysfunction and behavioral impairment, and there is a lack of effective drugs to treat AD clinically. Existing medications for the treatment of AD, such as Tacrine, Donepezil, Rivastigmine, and Aducanumab, only serve to delay symptoms and but not cure disease. To add insult to injury, these medications are associated with very serious adverse effects. Therefore, it is urgent to explore effective therapeutic drugs for AD. Recently, studies have shown that a variety of enzyme inhibitors, such as cholinesterase inhibitors, monoamine oxidase (MAO)inhibitors, secretase inhibitors, can ameliorate cholinergic system dysfunction, Aβ production and deposition, Tau protein hyperphosphorylation, oxidative stress damage, and the decline of synaptic plasticity, thereby improving AD symptoms and cognitive function. Some plant extracts from natural sources, such as Umbelliferone, Aaptamine, Medha Plus, have the ability to inhibit cholinesterase activity and act to improve learning and cognition. Isochromanone derivatives incorporating the donepezil pharmacophore bind to the catalytic active site (CAS) and peripheral anionic site (PAS) sites of acetylcholinesterase (AChE), which can inhibit AChE activity and ameliorate cholinergic system disorders. A compound called Rosmarinic acid which is found in the Lamiaceae can inhibit monoamine oxidase, increase monoamine levels in the brain, and reduce Aβ deposition. Compounds obtained by hybridization of coumarin derivatives and hydroxypyridinones can inhibit MAO-B activity and attenuate oxidative stress damage. Quinoline derivatives which inhibit the activation of AChE and MAO-B can reduce Aβ burden and promote learning and memory of mice. The compound derived from the combination of propargyl and tacrine retains the inhibitory capacity of tacrine towards cholinesterase, and also inhibits the activity of MAO by binding to the FAD cofactor of monoamine oxidase. A series of hybrids, obtained by an amide linker of chromone in combine with the benzylpiperidine moieties of donepezil, have a favorable safety profile of both cholinesterase and monoamine oxidase inhibitory activity. Single domain antibodies (such as AAV-VHH) targeted the inhibition of BACE1 can reduce Aβ production and deposition as well as the levels of inflammatory cells, which ultimately improve synaptic plasticity. 3-O-trans-p-coumaroyl maslinic acid from the extract of Ligustrum lucidum can specifically inhibit the activity of γ-secretase, thereby rescuing the long-term potentiation and enhancing synaptic plasticity in APP/PS1 mice. Inhibiting γ-secretase activity which leads to the decline of inflammatory factors (such as IFN-γ, IL-8) not only directly improves the pathology of AD, but also reduces Aβ production. Melatonin reduces the transcriptional expression of GSK-3β mRNA, thereby decreasing the levels of GSK-3β and reducing the phosphorylation induced by GSK-3β. Hydrogen sulfide can inhibitGSK-3β activity via sulfhydration of the Cys218 site of GSK-3β, resulting in the suppression of Tau protein hyperphosphorylation, which ameliorate the motor deficits and cognitive impairment in mice with AD. This article reviews enzyme inhibitors and conformational optimization of enzyme inhibitors targeting the regulation of cholinesterase, monoamine oxidase, secretase, and GSK-3β. We are hoping to provide a comprehensive overview of drug development in the enzyme inhibitors, which may be useful in treating AD.
5.Establishment and Validation of a Multiplex PCR Detection System for the Identification of Six Common Edible Meat Components
Zhi-Wei JIANG ; Ruo-Cheng XIA ; Rui-Yang TAO ; Cheng-Tao LI
Journal of Forensic Medicine 2024;40(3):254-260
Objective To establish a rapid,accurate,and sensitive multiplex PCR detection method for the simultaneous identification of the six common edible meats (beef,lamp,chicken,pork,goose,duck),and to evaluate its application value in meat adulteration identification.Methods Based on complete mitochondrial genomic sequences of six species in the GenBank database,DNA sequences (cattle:16S rRNA;sheep:COX-1;chickens:Cytb;pig:COX-1;goose:NADH2;duck:16S rRNA) with intra-species conservation and inter-species specificity were screened,and species-specific primers were designed to construct a multiplex PCR detection system that can simultaneously detect the meat of six common species.The species specificity,sensitivity and reproducibility of the system were studied,and the simulated mixture sample detection was performed.Results This study successfully constructed a multiplex PCR detection system that can detect the meats of six common species simultaneously.The system was not effective in DNA amplification of non-target species.When the DNA template sizes were 0.0625-2 ng/μL,the amplified products of all six species could be detected.The duck compo-nent was still detected when the mixing ratio of duck and beef was as low as 0.5%.Conclusion This study constructs and establishes a multiplex PCR detection system with strong specificity,high sensi-tivity,and good reproducibility.It can accurately identify the components of animal origin in common edible meats and provide a simple and practical method for identifying adulteration of common edible meats and meat products in China.
6.Risk factors for bronchopulmonary dysplasia in twin preterm infants:a multicenter study
Yu-Wei FAN ; Yi-Jia ZHANG ; He-Mei WEN ; Hong YAN ; Wei SHEN ; Yue-Qin DING ; Yun-Feng LONG ; Zhi-Gang ZHANG ; Gui-Fang LI ; Hong JIANG ; Hong-Ping RAO ; Jian-Wu QIU ; Xian WEI ; Ya-Yu ZHANG ; Ji-Bin ZENG ; Chang-Liang ZHAO ; Wei-Peng XU ; Fan WANG ; Li YUAN ; Xiu-Fang YANG ; Wei LI ; Ni-Yang LIN ; Qian CHEN ; Chang-Shun XIA ; Xin-Qi ZHONG ; Qi-Liang CUI
Chinese Journal of Contemporary Pediatrics 2024;26(6):611-618
Objective To investigate the risk factors for bronchopulmonary dysplasia(BPD)in twin preterm infants with a gestational age of<34 weeks,and to provide a basis for early identification of BPD in twin preterm infants in clinical practice.Methods A retrospective analysis was performed for the twin preterm infants with a gestational age of<34 weeks who were admitted to 22 hospitals nationwide from January 2018 to December 2020.According to their conditions,they were divided into group A(both twins had BPD),group B(only one twin had BPD),and group C(neither twin had BPD).The risk factors for BPD in twin preterm infants were analyzed.Further analysis was conducted on group B to investigate the postnatal risk factors for BPD within twins.Results A total of 904 pairs of twins with a gestational age of<34 weeks were included in this study.The multivariate logistic regression analysis showed that compared with group C,birth weight discordance of>25%between the twins was an independent risk factor for BPD in one of the twins(OR=3.370,95%CI:1.500-7.568,P<0.05),and high gestational age at birth was a protective factor against BPD(P<0.05).The conditional logistic regression analysis of group B showed that small-for-gestational-age(SGA)birth was an independent risk factor for BPD in individual twins(OR=5.017,95%CI:1.040-24.190,P<0.05).Conclusions The development of BPD in twin preterm infants is associated with gestational age,birth weight discordance between the twins,and SGA birth.
7.A new norsesquiterpenoid from Arctium lappa leaves.
Jiang-Nan LYU ; Ling-Xia ZHANG ; Qing-Yu YANG ; Na HUANG ; Zhi-Min WANG ; Li-Ping DAI
China Journal of Chinese Materia Medica 2023;48(18):5024-5031
Chemical constituents were isolated and purified from ethyl acetate fraction of Arctium lappa leaves by silica gel, ODS, MCI, and Sephadex LH-20 column chromatography. Their structures were identified with multiple spectroscopical methods including NMR, MS, IR, UV, and X-ray diffraction combined with literature data. Twenty compounds(1-20) were identified and their structures were determined as arctanol(1), citroside A(2), melitensin 15-O-β-D-glucoside(3), 11β,13-dihydroonopordopicrin(4), 11β,13-dihydrosalonitenolide(5), 8α-hydroxy-β-eudesmol(6), syringin(7), dihydrosyringin(8), 3,4,3',4'-tetrahydroxy-δ-truxinate(9),(+)-pinoresinol(10), phillygenin(11), syringaresinol(12), kaeperferol(13), quercetin(14), luteolin(15), hyperin(16), 4,5-O-dicaffeoylquinic acid(17), 1H-indole-3-carboxaldehyde(18), benzyl-β-D-glucopyranoside(19), and N-(2'-phenylethyl) isobutyramide(20). Among them, compound 1 is a new norsesquiterpenoid, and compounds 2-5, 7-8, and 18-20 are isolated from this plant for the first time.
Arctium/chemistry*
;
Magnetic Resonance Spectroscopy
;
Luteolin/analysis*
;
Plant Leaves/chemistry*
8.Clinical application of plasma exchange combined with continuous veno-venous hemofiltration dialysis in children with refractory Kawasaki disease shock syndrome.
Xia-Yan KANG ; Yuan-Hong YUAN ; Zhi-Yue XU ; Xin-Ping ZHANG ; Jiang-Hua FAN ; Hai-Yan LUO ; Xiu-Lan LU ; Zheng-Hui XIAO
Chinese Journal of Contemporary Pediatrics 2023;25(6):566-571
OBJECTIVES:
To study the role of plasma exchange combined with continuous blood purification in the treatment of refractory Kawasaki disease shock syndrome (KDSS).
METHODS:
A total of 35 children with KDSS who were hospitalized in the Department of Pediatric Intensive Care Unit, Hunan Children's Hospital, from January 2019 to August 2022 were included as subjects. According to whether plasma exchange combined with continuous veno-venous hemofiltration dialysis was performed, they were divided into a purification group with 12 patients and a conventional group with 23 patients. The two groups were compared in terms of clinical data, laboratory markers, and prognosis.
RESULTS:
Compared with the conventional group, the purification group had significantly shorter time to recovery from shock and length of hospital stay in the pediatric intensive care unit, as well as a significantly lower number of organs involved during the course of the disease (P<0.05). After treatment, the purification group had significant reductions in the levels of interleukin-6, tumor necrosis factor-α, heparin-binding protein, and brain natriuretic peptide (P<0.05), while the conventional group had significant increases in these indices after treatment (P<0.05). After treatment, the children in the purification group tended to have reductions in stroke volume variation, thoracic fluid content, and systemic vascular resistance and an increase in cardiac output over the time of treatment.
CONCLUSIONS
Plasma exchange combined with continuous veno-venous hemofiltration dialysis for the treatment of KDSS can alleviate inflammation, maintain fluid balance inside and outside blood vessels, and shorten the course of disease, the duration of shock and the length of hospital stay in the pediatric intensive care unit.
Humans
;
Child
;
Plasma Exchange
;
Mucocutaneous Lymph Node Syndrome/therapy*
;
Continuous Renal Replacement Therapy
;
Renal Dialysis
;
Plasmapheresis
;
Shock
10.The value of transanal multipoint full-layer puncture biopsy in determining the response degree of rectal cancer following neoadjuvant therapy: a prospective multicenter study.
Jia Gang HAN ; Li Ting SUN ; Zhi Wei ZHAI ; Ping Dian XIA ; Hang HU ; Di ZHANG ; Cong Qing JIANG ; Bao Cheng ZHAO ; Hao QU ; Qun QIAN ; Yong DAI ; Hong Wei YAO ; Zhen Jun WANG
Chinese Journal of Surgery 2023;61(9):769-776
Objective: To verify the feasibility and accuracy of the transanal multipoint full-layer puncture biopsy (TMFP) technique in determining the residual status of cancer foci after neoadjuvant therapy (nCRT) in rectal cancer. Methods: Between April 2020 and November 2022, a total of 78 patients from the Beijing Chaoyang Hospital of Capital Medical University, the Beijing Friendship Hospital of Capital Medical University, the Qilu Hospital of Shandong University, the Zhongnan Hospital of Wuhan University with advanced rectal cancer received TMFP after nCRT participated in this prospective multicenter trial. There were 53 males and 25 females, aged (M(IQR)) 61 (13) years (range: 35 to 77 years). The tumor distance from the anal verge was 5 (3) cm (range: 2 to 10 cm). The waiting time between nCRT and TMFP was 73 (26) days (range: 33 to 330 days). 13-point transanal puncture was performed with a 16 G tissue biopsy needle with the residual lesion as the center. The specimens were submitted for independent examination and the complications of the puncture were recorded. The consistency of TMFP and radical operation specimen was compared. The consistency of TMPF with clinical remission rates for the diagnosis of complete pathological remission was compared by sensitivity, specificity, negative predictive value, positive predictive value and accuracy. Statistical analysis between groups was performed using the χ2 analysis, and a paired χ2 test was used to compare diagnostic validity. Results: Before TMFP, clinical complete response (cCR) was evaluated in 27 cases. Thirty-six cases received in vivo puncture, the number of punctures in each patient was 13 (8) (range: 4 to 20), 24 cases of tumor residue were found in the puncture specimens. The sensitivity to judgment (100% vs. 60%, χ2=17.500, P<0.01) and accuracy (88.5% vs. 74.4%, χ2=5.125, P=0.024) of TMFP for the pathologic complete response (pCR) were significantly higher than those of cCR. Implement TMFP based on cCR judgment, the accuracy increased from 74.4% to 92.6% (χ2=4.026, P=0.045). The accuracy of the in vivo puncture was 94.4%, which was 83.3% of the in vitro puncture (χ2=1.382, P=0.240). Overall, the accuracy of TMFP improved gradually with an increasing number of cases (χ2=7.112, P=0.029). Conclusion: TMFP is safe and feasible, which improves the sensitivity and accuracy of rectal cancer pCR determination after nCRT, provides a pathological basis for cCR determination, and contributes to the safe development of the watch and wait policy.

Result Analysis
Print
Save
E-mail