1.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Research progress on the mechanism of metachronous gastric cancer after endoscopic submucosal dissection and Helicobacter pylori eradication in early gastric cancer
Xin-Yue HU ; Bin WANG ; Tao WANG ; Kai-Jun LIU ; Liang-Zhi WEN ; Dong-Feng CHEN
Medical Journal of Chinese People's Liberation Army 2024;49(1):108-114
Helicobacter pylori(HP)infection is a Class Ⅰ carcinogen in gastric cancer,closely related to the occurrence of gastric cancer.Many studies have shown that HP eradication has a preventive effect on gastric cancer.However,2.7%-6.1%of patients with early gastric cancer who have been eradicated after endoscopic submucosal dissection(ESD)can still develop metachronous gastric cancer(MGC),and the mechanism of its occurrence is still unclear.In this review,the atrophy of gastric mucosa and intestinal metaplasia cannot be completely reversed after HP eradication,the excessive proliferation of gastric mucosa epithelial cells,the accumulation of genetic abnormalities,the homeostasis imbalance of the epigenetic group,changes in immune microenvironment,the abnormality of stem cells in gastric mucosa,chromatin accessibility,and changes in chromosome remodeling were discussed in the mechanism of carcinogenesis caused by the above molecular changes after ESD and HP eradication in early gastric cancer.
5.Study on the effect of different administration regimens of iprrazole enteric-coated tablets on inhibiting gastric acid secretion
Ting-Yuan PANG ; Zhi WANG ; Zi-Shu HU ; Zi-Han SHEN ; Yue-Qi WANG ; Ya-Qian CHEN ; Xue-Bing QIAN ; Jin-Ying LIANG ; Liang-Ying YI ; Jun-Long LI ; Zhi-Hui HAN ; Guo-Ping ZHONG ; Guo-Hua CHENG ; Hai-Tang HU
The Chinese Journal of Clinical Pharmacology 2024;40(1):92-96
Objective To compare the effects of 20 mg qd and 10 mg bidadministration of iprrazole enteric-coated tablets on the control of gastric acid in healthy subjects.Methods A randomized,single-center,parallel controlled trial was designed to include 8 healthy subjects.Randomly divided into 2 groups,20 mg qd administration group:20 mg enteric-coated tablets of iprrazole in the morning;10 mg bid administration group:10 mg enteric-coated tablets of iprrazole in the morning and 10 mg in the evening.The pH values in the stomach of the subjects before and 24 h after administration were monitored by pH meter.The plasma concentration of iprazole after administration was determined by HPLC-MS/MS.The main pharmacokinetic parameters were calculated by Phoenix WinNonlin(V8.0)software.Results The PK parameters of iprrazole enteric-coated tablets and reference preparations in fasting group were as follows:The Cmax of 20 mg qd group and 10 mg bid group were(595.75±131.15)and(283.50±96.98)ng·mL-1;AUC0-t were(5 531.94±784.35)and(4 686.67±898.23)h·ng·mL-1;AUC0-∞ were(6 003.19±538.59)and(7 361.48±1 816.77)h·ng·mL-1,respectively.The mean time percentage of gastric pH>3 after 20 mg qd and 10 mg bid were 82.64%and 61.92%,and the median gastric pH within 24 h were 6.25±1.49 and 3.53±2.05,respectively.The mean gastric pH values within 24 h were 5.71±1.36 and 4.23±1.45,respectively.The correlation analysis of pharmacokinetic/pharmacodynamics showed that there was no significant correlation between the peak concentration of drug in plasma and the inhibitory effect of acid.Conclusion Compared with the 20 mg qd group and the 10 mg bid group,the acid inhibition effect is better,the administration times are less,and the safety of the two administration regimes is good.
6.Effects of hydroxysafflor yellow A on autophagy in bEnd.3 cells after oxygen-glucose deprivation
Yao-Yao DAI ; Meng-Qi SHU ; Ru-Heng WEI ; Zhu-Yue MIAO ; Zhi-Bin DING ; Dong MA ; Jian-Jun HUANG ; Li-Juan SONG ; Cun-Gen MA
The Chinese Journal of Clinical Pharmacology 2024;40(12):1734-1738
Objective To explore the effect and mechanism of hydroxysafflor yellow A(HSYA)on autophagy in bEnd.3 cells after oxygen-glucose deprivation(OGD).Methods The bEnd.3 cells were divided into normal group(conventional culture),model group(OGD model),HSYA group(OGD model+75 μmol·L-1 HSYA),3-methyladenine(3MA)group(5 mmol·L-1 3MA+OGD model)and 3 MA+HSYA group(5 mmol·L-1 3 MA+OGD model+75 μmol·L-1 HSYA).The level of apoptosis was determined by TUNEL fluorescence staining;Western blot was used to detect the expression of autophagy,blood brain barrier(BBB)related proteins;real time fluorescence quantitative polymerase chain reaction method for determining the expression of sirtuin-1(SIRT1)and forkhead box protein O3a(FOXO3A)mRNA.Results In the normal group,model group,HSYA group,3MA group and 3MA+HSYA group,the positive cells selected for TUNEL staining were 5.00±1.00,28.00±2.00,21.00±3.00,35.33±2.51 and 29.67±2.52;the expression levels of microtubule-associated protein 1 light chain 3-Ⅱ/-Ⅰ(LC3-Ⅱ/-Ⅰ)were 0.90±0.20,1.34±0.10,1.95±0.14,0.76±0.15 and 1.14±0.09;sequestosome 1(P62)were 0.99±0.02,0.60±0.02,0.38±0.01,0.67±0.04 and 0.54±0.01;occludin were 1.39±0.17,0.62±0.15,1.00±0.09,0.40±0.13 and 0.80±0.15;zonula occludens-1(ZO-1)were 1.63±0.20,0.64±0.06,0.98±0.14,0.37±0.14 and 0.87±0.04;SIRT1 mRNA were 1.00±0.00,0.75±0.07,1.69±0.09,0.31±0.02 and 0.56±0.01;FOXO3A mRNA were 1.00±0.00,0.80±0.05,1.47±0.09,0.40±0.01 and 0.62±0.09,respectively.Significant differences were found between model group and normal group,HSYA group and model group,3MA+HSYA group and 3MA group(P<0.05,P<0.01,P<0.001).Conclusion HSYA may enhance autophagy levels in bEnd.3 cells after OGD through the SIRT1/FOXO3A pathway,inhibit cell apoptosis and alleviate BBB damage.
7.Advances in crystal nucleation for amorphous drugs
Jie ZHANG ; Kang LI ; Zi-qing YANG ; Zi-han DING ; Sai-jun XIAO ; Zhi-ming YUE ; Li-mei CAI ; Jia-wen LI ; Ding KUANG ; Min-zhuo LIU ; Zhi-hong ZENG
Acta Pharmaceutica Sinica 2024;59(7):1962-1969
Amorphous solid dispersion (ASD) is one of the most effective formulation approaches to enhance the water solubility and oral bioavailability of poorly water-soluble drugs. However, maintenance of physical stability of amorphous drug is one of the main challenges in the development of ASD. Crystallization is a process of nucleation and crystal growth. The nucleation is the key factor that influences the physical stability of the ASD. However, a theoretical framework to describe the way to inhibit the nucleation of amorphous drug is not yet available. We reviewed the methods and theories of nucleation for amorphous drug. Meanwhile, we also summarized the research progress on the mechanism of additives influence on nucleation and environmental factors on nucleation. This review aims to enhance the better understanding mechanism of nucleation of amorphous drug and controlling over the crystal nucleation during the ASD formulation development.
8.Novel Immune-related Proteins Identified from Mytilus coruscus by Hemocytes Full-length Transcriptome and Serum Differential Proteome
Wen-Hui XIAO ; Hao-Dong WANG ; Zong-Xin YANG ; Fang SONG ; Yue WANG ; Jian-Yu HE ; Xiao-Lin ZHANG ; Xiao-Jun YAN ; Zhi LIAO
Chinese Journal of Biochemistry and Molecular Biology 2024;40(7):947-963
Mytilus is one of bivalves with great economic and ecological values.The innate immune de-fense of Mytilus shows great significance in the study of marine biological immunology.Hemolymph is the main immune tissue for Mytilus.The Nanopore full-length transcriptome of Mytilus coruscus hemocytes,and the serum differential proteomics based on SDS-PAGE analysis were performed to identify key pro-teins involving in the immune response of Mytilus hemolymph in response of different bacteria and fungi stresses.A total of 44 proteins were identified in the serum induced by different microorganisms.Among them,26 proteins showed significant differential expression level in response to different microbial stres-ses,and their functions were involved in protein folding protection,cell autophagy and apoptosis regula-tion,reactive oxygen species production,energy metabolism regulation,cell detoxification,and immune regulation.The changes in expression levels of these proteins varied in response to different bacterial and fungal stresses,suggesting that Mytilus has different immune response strategies to different bacterial and fungal stresses.The results provide a new scientific basis for understanding the differential immune mech-anism of Mytilus innate immune system in response to different types of microbial invasion,as well as the screening of specific biomarker proteins for microbial infection,and provide ideas for the healthy develop-ment and disease prevention of shellfish aquaculture.
9.Development and validation of a stromal-immune signature to predict prognosis in intrahepatic cholangiocarcinoma
Yu-Hang YE ; Hao-Yang XIN ; Jia-Li LI ; Ning LI ; Si-Yuan PAN ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Peng-Cheng WANG ; Chu-Bin LUO ; Rong-Qi SUN ; Jia FAN ; Jian ZHOU ; Zheng-Jun ZHOU ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2024;30(4):914-928
Background:
Intrahepatic cholangiocarcinoma (ICC) is a highly desmoplastic tumor with poor prognosis even after curative resection. We investigated the associations between the composition of the ICC stroma and immune cell infiltration and aimed to develop a stromal-immune signature to predict prognosis in surgically treated ICC.
Patients and methods:
We recruited 359 ICC patients and performed immunohistochemistry to detect α-smooth muscle actin (α-SMA), CD3, CD4, CD8, Foxp3, CD68, and CD66b. Aniline was used to stain collagen deposition. Survival analyses were performed to detect prognostic values of these markers. Recursive partitioning for a discrete-time survival tree was applied to define a stromal-immune signature with distinct prognostic value. We delineated an integrated stromal-immune signature based on immune cell subpopulations and stromal composition to distinguish subgroups with different recurrence-free survival (RFS) and overall survival (OS) time.
Results:
We defined four major patterns of ICC stroma composition according to the distributions of α-SMA and collagen: dormant (α-SMAlow/collagenhigh), fibrogenic (α-SMAhigh/collagenhigh), inert (α-SMAlow/collagenlow), and fibrolytic (α-SMAhigh/collagenlow). The stroma types were characterized by distinct patterns of infiltration by immune cells. We divided patients into six classes. Class I, characterized by high CD8 expression and dormant stroma, displayed the longest RFS and OS, whereas Class VI, characterized by low CD8 expression and high CD66b expression, displayed the shortest RFS and OS. The integrated stromal-immune signature was consolidated in a validation cohort.
Conclusion
We developed and validated a stromal-immune signature to predict prognosis in surgically treated ICC. These findings provide new insights into the stromal-immune response to ICC.
10.Survival analysis of patients with intrahepatic cholangiocarcinoma treated with adjuvant chemotherapy after radical resection based on CoxPH model and deep learning algorithm.
Jia Lu CHEN ; Xiao Peng YU ; Yue TANG ; Chen CHEN ; Ying He QIU ; Hong WU ; Tian Qiang SONG ; Yu HE ; Xian Hai MAO ; Wen Long ZHAI ; Zhang Jun CHENG ; Jing Dong LI ; Zhi Min GENG ; Zhao Hui TANG ; Zhi Wei QUAN
Chinese Journal of Surgery 2023;61(4):313-320
Objective: To establish a predictive model for survival benefit of patients with intrahepatic cholangiocarcinoma (ICC) who received adjuvant chemotherapy after radical resection. Methods: The clinical and pathological data of 249 patients with ICC who underwent radical resection and adjuvant chemotherapy at 8 hospitals in China from January 2010 to December 2018 were retrospectively collected. There were 121 males and 128 females,with 88 cases>60 years old and 161 cases≤60 years old. Feature selection was performed by univariate and multivariate Cox regression analysis. Overall survival time and survival status were used as outcome indicators,then target clinical features were selected. Patients were stratified into high-risk group and low-risk group,survival differences between the two groups were analyzed. Using the selected clinical features, the traditional CoxPH model and deep learning DeepSurv survival prediction model were constructed, and the performance of the models were evaluated according to concordance index(C-index). Results: Portal vein invasion, carcinoembryonic antigen>5 μg/L,abnormal lymphocyte count, low grade tumor pathological differentiation and positive lymph nodes>0 were independent adverse prognostic factors for overall survival in 249 patients with adjuvant chemotherapy after radical resection (all P<0.05). The survival benefit of adjuvant chemotherapy in the high-risk group was significantly lower than that in the low-risk group (P<0.05). Using the above five features, the traditional CoxPH model and the deep learning DeepSurv survival prediction model were constructed. The C-index values of the training set were 0.687 and 0.770, and the C-index values of the test set were 0.606 and 0.763,respectively. Conclusion: Compared with the traditional Cox model, the DeepSurv model can more accurately predict the survival probability of patients with ICC undergoing adjuvant chemotherapy at a certain time point, and more accurately judge the survival benefit of adjuvant chemotherapy.

Result Analysis
Print
Save
E-mail