1.The Application of Quantum Dots in Disease Diagnosis and Treatment
Ji-Sheng SHEN ; Li-Li QI ; Jin-Bo WANG ; Zhi-Jian KE ; Qi-Chao WANG
Progress in Biochemistry and Biophysics 2025;52(8):1917-1931
		                        		
		                        			
		                        			Quantum dots (QDs), nanoscale semiconductor crystals, have emerged as a revolutionary class of nanomaterials with unique optical and electrochemical properties, making them highly promising for applications in disease diagnosis and treatment. Their tunable emission spectra, long-term photostability, high quantum yield, and excellent charge carrier mobility enable precise control over light emission and efficient charge utilization, which are critical for biomedical applications. This article provides a comprehensive review of recent advancements in the use of quantum dots for disease diagnosis and therapy, highlighting their potential and the challenges involved in clinical translation. Quantum dots can be classified based on their elemental composition and structural configuration. For instance, IB-IIIA-VIA group quantum dots and core-shell structured quantum dots are among the most widely studied types. These classifications are essential for understanding their diverse functionalities and applications. In disease diagnosis, quantum dots have demonstrated remarkable potential due to their high brightness, photostability, and ability to provide precise biomarker detection. They are extensively used in bioimaging technologies, enabling high-resolution imaging of cells, tissues, and even individual biomolecules. As fluorescent markers, quantum dots facilitate cell tracking, biosensing, and the detection of diseases such as cancer, bacterial and viral infections, and immune-related disorders. Their ability to provide real-time, in vivo tracking of cellular processes has opened new avenues for early and accurate disease detection. In the realm of disease treatment, quantum dots serve as versatile nanocarriers for targeted drug delivery. Their nanoscale size and surface modifiability allow them to transport therapeutic agents to specific sites, improving drug bioavailability and reducing off-target effects. Additionally, quantum dots have shown promise as photosensitizers in photodynamic therapy (PDT). When exposed to specific wavelengths of light, quantum dots interact with oxygen molecules to generate reactive oxygen species (ROS), which can selectively destroy malignant cells, vascular lesions, and microbial infections. This targeted approach minimizes damage to healthy tissues, making PDT a promising strategy for treating complex diseases. Despite these advancements, the translation of quantum dots from research to clinical application faces significant challenges. Issues such as toxicity, stability, and scalability in industrial production remain major obstacles. The potential toxicity of quantum dots, particularly to vital organs, has raised concerns about their long-term safety. Researchers are actively exploring strategies to mitigate these risks, including surface modification, coating, and encapsulation techniques, which can enhance biocompatibility and reduce toxicity. Furthermore, improving the stability of quantum dots under physiological conditions is crucial for their effective use in biomedical applications. Advances in surface engineering and the development of novel encapsulation methods have shown promise in addressing these stability concerns. Industrial production of quantum dots also presents challenges, particularly in achieving consistent quality and scalability. Recent innovations in synthesis techniques and manufacturing processes are paving the way for large-scale production, which is essential for their widespread adoption in clinical settings. This article provides an in-depth analysis of the latest research progress in quantum dot applications, including drug delivery, bioimaging, biosensing, photodynamic therapy, and pathogen detection. It also discusses the multiple barriers hindering their clinical use and explores potential solutions to overcome these challenges. The review concludes with a forward-looking perspective on the future directions of quantum dot research, emphasizing the need for further studies on toxicity mitigation, stability enhancement, and scalable production. By addressing these critical issues, quantum dots can realize their full potential as transformative tools in disease diagnosis and treatment, ultimately improving patient outcomes and advancing biomedical science. 
		                        		
		                        		
		                        		
		                        	
2.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
3.Criteria and prognostic models for patients with hepatocellular carcinoma undergoing liver transplantation
Meng SHA ; Jun WANG ; Jie CAO ; Zhi-Hui ZOU ; Xiao-ye QU ; Zhi-feng XI ; Chuan SHEN ; Ying TONG ; Jian-jun ZHANG ; Seogsong JEONG ; Qiang XIA
Clinical and Molecular Hepatology 2025;31(Suppl):S285-S300
		                        		
		                        			
		                        			 Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated death globally. Liver transplantation (LT) has emerged as a key treatment for patients with HCC, and the Milan criteria have been adopted as the cornerstone of the selection policy. To allow more patients to benefit from LT, a number of expanded criteria have been proposed, many of which use radiologic morphological characteristics with larger and more tumors as surrogates to predict outcomes. Other groups developed indices incorporating biological variables and dynamic markers of response to locoregional treatment. These expanded selection criteria achieved satisfactory results with limited liver supplies. In addition, a number of prognostic models have been developed using clinicopathological characteristics, imaging radiomics features, genetic data, and advanced techniques such as artificial intelligence. These models could improve prognostic estimation, establish surveillance strategies, and bolster long-term outcomes in patients with HCC. In this study, we reviewed the latest findings and achievements regarding the selection criteria and post-transplant prognostic models for LT in patients with HCC. 
		                        		
		                        		
		                        		
		                        	
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
6.Criteria and prognostic models for patients with hepatocellular carcinoma undergoing liver transplantation
Meng SHA ; Jun WANG ; Jie CAO ; Zhi-Hui ZOU ; Xiao-ye QU ; Zhi-feng XI ; Chuan SHEN ; Ying TONG ; Jian-jun ZHANG ; Seogsong JEONG ; Qiang XIA
Clinical and Molecular Hepatology 2025;31(Suppl):S285-S300
		                        		
		                        			
		                        			 Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated death globally. Liver transplantation (LT) has emerged as a key treatment for patients with HCC, and the Milan criteria have been adopted as the cornerstone of the selection policy. To allow more patients to benefit from LT, a number of expanded criteria have been proposed, many of which use radiologic morphological characteristics with larger and more tumors as surrogates to predict outcomes. Other groups developed indices incorporating biological variables and dynamic markers of response to locoregional treatment. These expanded selection criteria achieved satisfactory results with limited liver supplies. In addition, a number of prognostic models have been developed using clinicopathological characteristics, imaging radiomics features, genetic data, and advanced techniques such as artificial intelligence. These models could improve prognostic estimation, establish surveillance strategies, and bolster long-term outcomes in patients with HCC. In this study, we reviewed the latest findings and achievements regarding the selection criteria and post-transplant prognostic models for LT in patients with HCC. 
		                        		
		                        		
		                        		
		                        	
7.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
8.Criteria and prognostic models for patients with hepatocellular carcinoma undergoing liver transplantation
Meng SHA ; Jun WANG ; Jie CAO ; Zhi-Hui ZOU ; Xiao-ye QU ; Zhi-feng XI ; Chuan SHEN ; Ying TONG ; Jian-jun ZHANG ; Seogsong JEONG ; Qiang XIA
Clinical and Molecular Hepatology 2025;31(Suppl):S285-S300
		                        		
		                        			
		                        			 Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated death globally. Liver transplantation (LT) has emerged as a key treatment for patients with HCC, and the Milan criteria have been adopted as the cornerstone of the selection policy. To allow more patients to benefit from LT, a number of expanded criteria have been proposed, many of which use radiologic morphological characteristics with larger and more tumors as surrogates to predict outcomes. Other groups developed indices incorporating biological variables and dynamic markers of response to locoregional treatment. These expanded selection criteria achieved satisfactory results with limited liver supplies. In addition, a number of prognostic models have been developed using clinicopathological characteristics, imaging radiomics features, genetic data, and advanced techniques such as artificial intelligence. These models could improve prognostic estimation, establish surveillance strategies, and bolster long-term outcomes in patients with HCC. In this study, we reviewed the latest findings and achievements regarding the selection criteria and post-transplant prognostic models for LT in patients with HCC. 
		                        		
		                        		
		                        		
		                        	
9.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
		                        		
		                        			 Objective:
		                        			To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer. 
		                        		
		                        			Materials and Methods:
		                        			A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs. 
		                        		
		                        			Results:
		                        			All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027). 
		                        		
		                        			Conclusion
		                        			The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer. 
		                        		
		                        		
		                        		
		                        	
10.Comparison of the efficacy of TiRobot orthopaedic robot assisted F screw technique and inverted triangle parallel nail internal fixation in the treatment of unstable femoral neck fractures
Xing-Long ZHAO ; Jian-Jun SHEN ; Kang-Hu FENG ; Zhi-Wei CHEN ; Yuan-Long SI ; Xuan ZHANG ; Guan-De WANG ; Xiang HAI
China Journal of Orthopaedics and Traumatology 2024;37(2):129-134
		                        		
		                        			
		                        			Objective To compare the effectiveness of TiRobot assisted F screw technique and inverted triangle parallel nail internal fixation in the treatment of unstable femoral neck fractures.Methods A retrospective analysis was conducted on 72 patients with unstable femoral neck fractures who were treated with percutaneous cannulated screw fixation assisted with TiRobot Orthopaedic robot from December 2019 to April 2021.Among them,37 patients were treated with F screw internal fixa-tion,including 16 males and 21 females,aged47 to 64years old with an average of(53.87±5.28)years old;According to Pauwels classification,there were 1 case of type Ⅰ,19 cases of type Ⅱ,17 cases of type Ⅲ;8 cases of combined medical diseases;17 cases of falling,8 cases of traffic accident and 12 cases of falling from height;The time from injury to operation was 29 to 49 hours with average of(35.00±7.34)hours.Another 35 cases used internal fixation with an inverted triangle parallel nail,including 13 males and 22 females with an average age of 46 to 63 years old(52.36±5.05)years old;According to the Pauwels injury classifi-cation:there were 2 cases of type Ⅰ,21 cases of type Ⅱ,12 cases of type Ⅲ;6 cases of medical diseases,15 cases of falling in-jury,9 cases of traffic accident,11 cases of falling injury;The time from injury to operation was 30 to 45 hours with an average of(33.00±6.83)h.The intraoperative blood loss,operation time,intraoperative fluoroscopy times,follow-up time,fracture healing time,postoperative complications were observed and compared between the two groups.The hip joint function was e-valuated by Harris score at 6 months and 12 months after operation.Results There was no significant difference in operation time,intraoperative blood loss,intraoperative fluoroscopy times and other intraoperative data between two groups(P>0.05).Both groups were followed up regularly,and the follow-up time was 12 to 16 months.The fracture healing time and Harris score of the F screw internal fixation group were better than those of the inverted triangle parallel nail internal fixation group(P<0.05).There was 1 case of femoral neck shortening in the F screw internal fixation group,1 case of nonunion,1 case of nail withdrawal,and 1 case of lower extremity deep vein thrombosis in the inverted triangle internal fixation group.The incidence of complications in the F screw internal fixation group was lower than that in the inverted triangle parallel nail internal fixation group(P<0.05).Conclusion Percutaneous cannulated F screw technique using Tirobot navigation positioning system is a safe and effective treatment for patients with unstable femoral neck fractures.It can significantly shorten the fracture healing time,reduce the incidence of postoperative complications,significantly improve hip joint function,and improve the quality of life.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail