1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Four new sesquiterpenoids from the roots of Atractylodes macrocephala
Gang-gang ZHOU ; Jia-jia LIU ; Ji-qiong WANG ; Hui LIU ; Zhi-Hua LIAO ; Guo-wei WANG ; Min CHEN ; Fan-cheng MENG
Acta Pharmaceutica Sinica 2025;60(1):179-184
The chemical constituents in dried roots of
3.Interpretation of 2024 ESC guidelines for the management of elevated blood pressure and hypertension
Yu CHENG ; Yiheng ZHOU ; Yao LÜ ; ; Dongze LI ; Lidi LIU ; Peng ZHANG ; Rong YANG ; Yu JIA ; Rui ZENG ; Zhi WAN ; Xiaoyang LIAO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):31-40
The European Society of Cardiology (ESC) released the "2024 ESC guidelines for the management of elevated blood pressure and hypertension" on August 30, 2024. This guideline updates the 2018 "Guidelines for the management of arterial hypertension." One notable update is the introduction of the concept of "elevated blood pressure" (120-139/70-89 mm Hg). Additionally, a new systolic blood pressure target range of 120-129 mm Hg has been proposed for most patients receiving antihypertensive treatment. The guideline also includes numerous additions or revisions in areas such as non-pharmacological interventions and device-based treatments for hypertension. This article interprets the guideline's recommendations on definition and classification of elevated blood pressure and hypertension, and cardiovascular disease risk assessment, diagnosing hypertension and investigating underlying causes, preventing and treating elevated blood pressure and hypertension. We provide a comparison interpretation with the 2018 "Guidelines for the management of arterial hypertension" and the "2017 ACC/AHA guideline on the prevention, detection, evaluation, and management of high blood pressure in adults."
4.Clinical Observation on Treatment of Hip Joint Pain with Mailuoning Compound Solution via Nerve Blocks around Hip Joint
Tao JIN ; Fuchang MA ; Cheng HUANG ; Manxia ZHI ; Ming YA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):152-158
ObjectiveTo observe the clinical efficacy and safety of Mailuoning compound solution in the treatment of hip joint pain via nerve blocks around the hip joint. MethodsFrom March 2015 to March 2019,a total of 136 patients with hip joint pain who met the inclusion criteria were admitted and divided into an observation group and a control group according to the random number table method. Among them,six cases fell off due to failure to complete five treatments,and finally, 130 patients entered clinical observation,with 65 cases in each group. The observation group used Mailuoning compound solution for nerve blocks around the hip joint(including obturator nerve,femoral nerve branch,superior gluteal nerve, and hip fascia). The control used Mailuoning compound solution for a simple obturator nerve block. The differences in the visual analogue scale (VAS) and Harris score of hip joint of the two groups before and after treatment were observed. Any adverse drug reactions and adverse events during the treatment of the patients were recorded. ResultsThe VAS score of the two groups was significantly decreased after treatment (P<0.01). The observation group had a more significant decrease compared to the control group(P<0.01). The total Harris score of hip joint, pain degree,function score, and motion of joint of the two groups were significantly improved after treatment (P<0.01). Compared with the control group,the improvement in the total Harris score of hip joint, pain degree,and function score was more significant in the observation group (P<0.01). The clinical efficacy based on the Harris score of hip joint of the two groups was compared. The excellent and good rate of the observation group was 84.62% (55/65), which was significantly better than that of the control group [56.92% (37/65)] (χ2=12.05,P<0.01). The follow-up results showed that the patients who achieved excellent and good results had stable curative effects and low recurrence rates,and there was no significant difference in recurrence rate between the two groups. Case analysis showed that after treatment of femoral head necrosis,the saccular transparent shadow of the femoral head was significantly reduced,and the number of bone trabeculae increased. The low-density shadow decreased as can be seen on hip X-rays. In patients with hip osteoporosis after treatment,the number of bone trabeculae increased, and the low density shadow reduced. ConclusionThe use of Mailuoning compound solution for nerve blocks around the hip joint gives full play to the synergistic effect of Mailuoning compound solution and nerve block. It can effectively relieve hip joint pain,promote the recovery of hip joint function,reduce the disability rate,and improve the quality of life of patients. Early intervention is an important link in the treatment of hip joint pain diseases,which can effectively control the development of the patient's disease. Mailuoning compound solution is a new idea and method to treat hip joint pain through neuroregulation,which is easy to operate,with high safety and good therapeutic effect. In future studies,a larger sample size is needed,and more in-depth research should be conducted on the imaging changes and mechanisms of action for various hip joint pain diseases.
5.Progress in the study of anti-inflammatory active components with anti-inflammatory effects and mechanisms in Caragana Fabr.
Yu-mei MA ; Ju-yuan LUO ; Tao CHEN ; Hong-mei LI ; Cheng SHEN ; Shuo WANG ; Zhi-bo SONG ; Yu-lin LI
Acta Pharmaceutica Sinica 2025;60(1):58-71
The plants of the genus
6.Huazhuo Jiedu Prescription Treats Ulcerative Colitis by Inhibiting Excessive Mitophagy via PINK1/Parkin Signaling Pathway
Haofeng ZHANG ; Jinye ZHOU ; Ziwei LIU ; Yican WANG ; Yirui CHENG ; Zheng ZHI ; Qian YANG ; Bolin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):182-189
ObjectiveTo investigate the mechanism of Huazhuo Jiedu prescription in treating ulcerative colitis (UC) by regulating mitophagy. MethodsThe genes related to mitophagy and UC were retrieved from GeneCards, and then the common genes of mitophagy and UC were analyzed by metascape to identify the genes related to mitophagy in UC. Animal experiments were carried out to decipher the mechanism by which Huazhuo Jiedu prescription treated UC by regulating mitophagy. Sixty C57BL/6 male mice were randomized into normal, model, high-, medium-, and low-dose (50, 25, 12.5 g·kg-1, respectively) Huazhuo Jiedu prescription, and mesalazine (0.52 g·kg-1·d-1) groups, with 10 mice in each group. After successful modeling by the dextran sulfate sodium-free drinking method, the colonic mucosal damage was observed by hematoxylin-eosin staining, and the ultracellular structure of colon mucosa was observed by transmission electron microscopy. The expression levels of mitophagy-related proteins PTEN-induced putative kinase 1 (PINK1) and Parkin protein were determined by Western blot. The expression of prohibitin 2 (PHB2), ubiquitin-specific protease 15 (USP15), ubiquitin-specific protease 30 (USP30) in the colon tissue was detected by immunofluorescence (IF). ResultsAll the drug intervention groups showed ameliorated pathological manifestations of the colonic mucosa and improved mitochondrial structures in UC mice. Compared with the normal group, the model group demonstrated up-regulated protein levels of PINK1 and Parkin (P<0.05), enhanced average fluorescence intensity of PHB2 (P<0.05), and weakened average fluorescence intensity of USP15 and USP30 (P<0.05). Compared with the model group, the mesalazine group and the high- and medium-dose Huazhuo Jiedu prescription groups showcased down-regulated protein levels of PINK1 and Parkin (P<0.05), decreased average fluorescence intensity of PHB2 (P<0.05), and enhanced average fluorescence intensity of USP15 and USP30 (P<0.05). The low-dose Huazhuo Jiedu prescription group showed down-regulated protein levels of PINK1 and Parkin (P<0.05), weakened average fluorescence intensity of PHB2 (P<0.05), and enhanced average fluorescence intensity of USP15 and USP30 (P<0.05). ConclusionHuazhuo Jiedu prescription can attenuate the intestinal mucosal injury and improve the mitochondrial cell ultrastructure in UC mice by regulating the expression of PINK1-Parkin pathway and inhibiting excessive mitophagy.
7.Huazhuo Jiedu Prescription Treats Ulcerative Colitis by Inhibiting Excessive Mitophagy via PINK1/Parkin Signaling Pathway
Haofeng ZHANG ; Jinye ZHOU ; Ziwei LIU ; Yican WANG ; Yirui CHENG ; Zheng ZHI ; Qian YANG ; Bolin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):182-189
ObjectiveTo investigate the mechanism of Huazhuo Jiedu prescription in treating ulcerative colitis (UC) by regulating mitophagy. MethodsThe genes related to mitophagy and UC were retrieved from GeneCards, and then the common genes of mitophagy and UC were analyzed by metascape to identify the genes related to mitophagy in UC. Animal experiments were carried out to decipher the mechanism by which Huazhuo Jiedu prescription treated UC by regulating mitophagy. Sixty C57BL/6 male mice were randomized into normal, model, high-, medium-, and low-dose (50, 25, 12.5 g·kg-1, respectively) Huazhuo Jiedu prescription, and mesalazine (0.52 g·kg-1·d-1) groups, with 10 mice in each group. After successful modeling by the dextran sulfate sodium-free drinking method, the colonic mucosal damage was observed by hematoxylin-eosin staining, and the ultracellular structure of colon mucosa was observed by transmission electron microscopy. The expression levels of mitophagy-related proteins PTEN-induced putative kinase 1 (PINK1) and Parkin protein were determined by Western blot. The expression of prohibitin 2 (PHB2), ubiquitin-specific protease 15 (USP15), ubiquitin-specific protease 30 (USP30) in the colon tissue was detected by immunofluorescence (IF). ResultsAll the drug intervention groups showed ameliorated pathological manifestations of the colonic mucosa and improved mitochondrial structures in UC mice. Compared with the normal group, the model group demonstrated up-regulated protein levels of PINK1 and Parkin (P<0.05), enhanced average fluorescence intensity of PHB2 (P<0.05), and weakened average fluorescence intensity of USP15 and USP30 (P<0.05). Compared with the model group, the mesalazine group and the high- and medium-dose Huazhuo Jiedu prescription groups showcased down-regulated protein levels of PINK1 and Parkin (P<0.05), decreased average fluorescence intensity of PHB2 (P<0.05), and enhanced average fluorescence intensity of USP15 and USP30 (P<0.05). The low-dose Huazhuo Jiedu prescription group showed down-regulated protein levels of PINK1 and Parkin (P<0.05), weakened average fluorescence intensity of PHB2 (P<0.05), and enhanced average fluorescence intensity of USP15 and USP30 (P<0.05). ConclusionHuazhuo Jiedu prescription can attenuate the intestinal mucosal injury and improve the mitochondrial cell ultrastructure in UC mice by regulating the expression of PINK1-Parkin pathway and inhibiting excessive mitophagy.
8.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
9.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
10.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.

Result Analysis
Print
Save
E-mail