1.Severity Assessment Parameters and Diagnostic Technologies of Obstructive Sleep Apnea
Zhuo-Zhi FU ; Ya-Cen WU ; Mei-Xi LI ; Ping-Ping YIN ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(1):147-161
Obstructive sleep apnea (OSA) is an increasingly widespread sleep-breathing disordered disease, and is an independent risk factor for many high-risk chronic diseases such as hypertension, coronary heart disease, stroke, arrhythmias and diabetes, which is potentially fatal. The key to the prevention and treatment of OSA is early diagnosis and treatment, so the assessment and diagnostic technologies of OSA have become a research hotspot. This paper reviews the research progresses of severity assessment parameters and diagnostic technologies of OSA, and discusses their future development trends. In terms of severity assessment parameters of OSA, apnea hypopnea index (AHI), as the gold standard, together with the percentage of duration of apnea hypopnea (AH%), lowest oxygen saturation (LSpO2), heart rate variability (HRV), oxygen desaturation index (ODI) and the emerging biomarkers, constitute a multi-dimensional evaluation system. Specifically, the AHI, which measures the frequency of sleep respiratory events per hour, does not fully reflect the patients’ overall sleep quality or the extent of their daytime functional impairments. To address this limitation, the AH%, which measures the proportion of the entire sleep cycle affected by apneas and hypopneas, deepens our understanding of the impact on sleep quality. The LSpO2 plays a critical role in highlighting the potential severe hypoxic episodes during sleep, while the HRV offers a different perspective by analyzing the fluctuations in heart rate thereby revealing the activity of the autonomic nervous system. The ODI provides a direct and objective measure of patients’ nocturnal oxygenation stability by calculating the number of desaturation events per hour, and the biomarkers offers novel insights into the diagnosis and management of OSA, and fosters the development of more precise and tailored OSA therapeutic strategies. In terms of diagnostic techniques of OSA, the standardized questionnaire and Epworth sleepiness scale (ESS) is a simple and effective method for preliminary screening of OSA, and the polysomnography (PSG) which is based on recording multiple physiological signals stands for gold standard, but it has limitations of complex operations, high costs and inconvenience. As a convenient alternative, the home sleep apnea testing (HSAT) allows patients to monitor their sleep with simplified equipment in the comfort of their own homes, and the cardiopulmonary coupling (CPC) offers a minimal version that simply analyzes the electrocardiogram (ECG) signals. As an emerging diagnostic technology of OSA, machine learning (ML) and artificial intelligence (AI) adeptly pinpoint respiratory incidents and expose delicate physiological changes, thus casting new light on the diagnostic approach to OSA. In addition, imaging examination utilizes detailed visual representations of the airway’s structure and assists in recognizing structural abnormalities that may result in obstructed airways, while sound monitoring technology records and analyzes snoring and breathing sounds to detect the condition subtly, and thus further expands our medical diagnostic toolkit. As for the future development directions, it can be predicted that interdisciplinary integrated researches, the construction of personalized diagnosis and treatment models, and the popularization of high-tech in clinical applications will become the development trends in the field of OSA evaluation and diagnosis.
2.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
3.Progress on antisense oligonucleotide in the field of antibacterial therapy
Jia LI ; Xiao-lu HAN ; Shi-yu SONG ; Jin-tao LIN ; Zhi-qiang TANG ; Zeng-ming WANG ; Liang XU ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2025;60(2):337-347
With the widespread use of antibiotics, drug-resistant bacterial infections have become a significant threat to human health. Finding new antibacterial strategies that can effectively control drug-resistant bacterial infections has become an urgent task. Unlike small molecule drugs that target bacterial proteins, antisense oligonucleotide (ASO) can target genes related to bacterial resistance, pathogenesis, growth, reproduction and biofilm formation. By regulating the expression of these genes, ASO can inhibit or kill bacteria, providing a novel approach for the development of antibacterial drugs. To overcome the challenge of delivering antisense oligonucleotide into bacterial cells, various drug delivery systems have been applied in this field, including cell-penetrating peptides, lipid nanoparticles and inorganic nanoparticles, which have injected new momentum into the development of antisense oligonucleotide in the antibacterial realm. This review summarizes the current development of small nucleic acid drugs, the antibacterial mechanisms, targets, sequences and delivery vectors of antisense oligonucleotide, providing a reference for the research and development of antisense oligonucleotide in the treatment of bacterial infections.
4.Progress in the study of anti-inflammatory active components with anti-inflammatory effects and mechanisms in Caragana Fabr.
Yu-mei MA ; Ju-yuan LUO ; Tao CHEN ; Hong-mei LI ; Cheng SHEN ; Shuo WANG ; Zhi-bo SONG ; Yu-lin LI
Acta Pharmaceutica Sinica 2025;60(1):58-71
The plants of the genus
5.An alkyne and two phenylpropanoid derivants from Carthamus tinctorius L.
Lin-qing QIAO ; Ge-ge XIA ; Ying-jie LI ; Wen-xuan ZHAO ; Yan-zhi WANG
Acta Pharmaceutica Sinica 2025;60(1):185-190
The chemical constituents from the
6.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
7.Introduction and enlightenment of the Recommendations and Expert Consensus for Plasm a and Platelet Transfusion Practice in Critically ill Children: from the Transfusion and Anemia Expertise Initiative-Control/Avoidance of Bleeding (TAXI-CAB)
Lu LU ; Jiaohui ZENG ; Hao TANG ; Lan GU ; Junhua ZHANG ; Zhi LIN ; Dan WANG ; Mingyi ZHAO ; Minghua YANG ; Rong HUANG ; Rong GUI
Chinese Journal of Blood Transfusion 2025;38(4):585-594
To guide transfusion practice in critically ill children who often need plasma and platelet transfusions, the Transfusion and Anemia Expertise Initiative-Control/Avoidance of Bleeding (TAXI-CAB) developed Recommendations and Expert Consensus for Plasma and Platelet Transfusion Practice in Critically Ill Children. This guideline addresses 53 recommendations related to plasma and platelet transfusion in critically ill children with 8 kinds of diseases, laboratory testing, selection/treatment of plasma and platelet components, and research priorities. This paper introduces the specific methods and results of the recommendation formation of the guideline.
8.Analgesic effect of acupuncture in a rat model of lumbar disc herniation
Fang ZHI ; Manhua ZHU ; Wei XIONG ; Xingzhen LIN
Chinese Journal of Tissue Engineering Research 2025;29(5):936-941
BACKGROUND:Acupuncture is an effective method for lumbar pain in lumbar disc herniation,but its mechanism has not yet been clarified.Factors related to the JAK2/STAT3 signaling pathway regulate the body's inflammatory response and are involved in the process of neuropathic pain. OBJECTIVE:To study the mechanism of acupuncture on lumbar disc herniation in a rat model based on the JAK2/STAT3 signaling pathway. METHODS:Forty Sprague-Dawley rats were randomly divided into four groups:sham operation group,model group,acupuncture group,and acupuncture+agonist group,with 10 rats in each group.Animal models of L5 lumbar disc herniation was constructed through autologous disc cell transplantation in the model group,acupuncture group,and acupuncture+agonist group.Rats in the acupuncture group and the acupuncture+agonist group received acupuncture treatment(Yanglingquan,Shenshu,Huantiao,and Dachangshu acupoints)at 3 days after modeling,and acupuncture treatment was given once a day,20 minutes each,for 15 consecutive days.Rats in the acupuncture+agonist group were injected intrathecally with coumermycin A1,a JAK2 agonist,into the L4/L5 intervertebral space,once a day,20 minutes each,prior to the acupuncture at 6,12,and 18 days after modeling.Paw withdrawal mechanical threshold was detected before and 3,6,9,12,15,and 18 days after modeling.At 18 days after modeling,serum inflammatory factor levels were detected,hematoxylin-eosin staining was performed to observe the morphology of L5-L6 tissues,RT-PCR was performed to detect the expression of JAK2 and STAT3 mRNAs in L5-L6 tissues,and western blot was performed to detect the expression of JAK2,p-JAK2 and p-STAT3 proteins in L5-L6 tissues. RESULTS AND CONCLUSION:The paw withdrawal mechanical thresholds of rats in the model group at different time points after modeling were lower than those in the sham operation group(P<0.05),the paw withdrawal mechanical thresholds of rats in the acupuncture group were higher than those in the model group at 9,12,15,and 18 days after modeling(P<0.05),and the paw withdrawal mechanical thresholds of rats in the acupuncture+agonist group were lower than those in the acupuncture group at 9,12,15,and 18 days after modeling(P<0.05).The levels of interleukin 6,tumor necrosis factor α,neurotransmitter substance P,and brain neuropeptide Y were elevated in the model group compared with the sham operation group(P<0.05);the levels of all four inflammatory factors were reduced in the acupuncture group compared with the model group(P<0.05);and the levels of all four inflammatory factors were elevated in the acupuncture+agonist group compared with the acupuncture group(P<0.05).Hematoxylin-eosin staining showed that lumbar degeneration was obvious in the model group but reduced in the acupuncture group and the acupuncture+agonist group.Moreover,the reduction was more obvious in the acupuncture group compared with the acupuncture+agonist group.The JAK2 and STAT3 mRNA expression as well as the p-JAK2 and p-STAT3 protein expression were elevated in the model group compared with the sham operation group(P<0.05),were decreased in the acupuncture group compared with the model group(P<0.05),and were increased in the acupuncture+agonist group compared with the acupuncture group(P<0.05).To conclude,acupuncture can alleviate inflammation to exert analgesic effects in the rat model of lumbar disc herniation,and its mechanism of action may be related to the inhibition of the JAK2/STAT3 signaling pathway.
9.rTMS Improves Cognitive Function and Brain Network Connectivity in Patients With Alzheimer’s Disease
Gui-Zhi XU ; Lin LIU ; Miao-Miao GUO ; Tian WANG ; Jiao-Jiao GAO ; Yong JI ; Pan WANG
Progress in Biochemistry and Biophysics 2025;52(8):2131-2145
ObjectiveRepetitive transcranial magnetic stimulation (rTMS) has demonstrated efficacy in enhancing neurocognitive performance in Alzheimer’s disease (AD), but the neurobiological mechanisms linking synaptic pathology, neural oscillatory dynamics, and brain network reorganization remain unclear. This investigation seeks to systematically evaluate the therapeutic potential of rTMS as a non-invasive neuromodulatory intervention through a multimodal framework integrating clinical assessments, molecular profiling, and neurophysiological monitoring. MethodsIn this prospective double-blind trial, 12 AD patients underwent a 14-day protocol of 20 Hz rTMS, with comprehensive multimodal assessments performed pre- and post-intervention. Cognitive functioning was quantified using the mini-mental state examination (MMSE) and Montreal cognitive assessment (MOCA), while daily living capacities and neuropsychiatric profiles were respectively evaluated through the activities of daily living (ADL) scale and combined neuropsychiatric inventory (NPI)-Hamilton depression rating scale (HAMD). Peripheral blood biomarkers, specifically Aβ1-40 and phosphorylated tau (p-tau181), were analyzed to investigate the effects of rTMS on molecular metabolism. Spectral power analysis was employed to investigate rTMS-induced modulations of neural rhythms in AD patients, while brain network analyses incorporating topological properties were conducted to examine stimulus-driven network reorganization. Furthermore, systematic assessment of correlations between cognitive scale scores, blood biomarkers, and network characteristics was performed to elucidate cross-modal therapeutic associations. ResultsClinically, MMSE and MOCA scores improved significantly (P<0.05). Biomarker showed that Aβ1-40 level increased (P<0.05), contrasting with p-tau181 reduction. Moreover, the levels of Aβ1-40 were positively correlated with MMSE and MOCA scores. Post-intervention analyses revealed significant modulations in oscillatory power, characterized by pronounced reductions in delta (P<0.05) and theta bands (P<0.05), while concurrent enhancements were observed in alpha, beta, and gamma band activities (all P<0.05). Network analysis revealed frequency-specific reorganization: clustering coefficients were significantly decreased in delta, theta, and alpha bands (P<0.05), while global efficiency improvement was exclusively detected in the delta band (P<0.05). The alpha band demonstrated concurrent increases in average nodal degree (P<0.05) and characteristic path length reduction (P<0.05). Further research findings indicate that the changes in the clinical scale HAMD scores before and after rTMS stimulation are negatively correlated with the changes in the blood biomarkers Aβ1-40 and p-tau181. Additionally, the changes in the clinical scales MMSE and MoCA scores were negatively correlated with the changes in the node degree of the alpha frequency band and negatively correlated with the clustering coefficient of the delta frequency band. However, the changes in MMSE scores are positively correlated with the changes in global efficiency of both the delta and alpha frequency bands. Conclusion20 Hz rTMS targeting dorsolateral prefrontal cortex (DLPFC) significantly improves cognitive function and enhances the metabolic clearance of β-amyloid and tau proteins in AD patients. This neurotherapeutic effect is mechanistically associated with rTMS-mediated frequency-selective neuromodulation, which enhances the connectivity of oscillatory networks through improved neuronal synchronization and optimized topological organization of functional brain networks. These findings not only support the efficacy of rTMS as an adjunctive therapy for AD but also underscore the importance of employing multiple assessment methods—including clinical scales, blood biomarkers, and EEG——in understanding and monitoring the progression of AD. This research provides a significant theoretical foundation and empirical evidence for further exploration of rTMS applications in AD treatment.
10.Study on the 90-day Feeding Experimental Background Data of SD Rats for Drug Safety Evaluation
Chao QIN ; Shuangxing LI ; Tingting ZHAO ; Chenchen JIANG ; Jing ZHAO ; Yanwei YANG ; Zhi LIN ; Sanlong WANG ; Hairuo WEN
Laboratory Animal and Comparative Medicine 2025;45(4):439-448
ObjectiveTo establish background data for a 90-day feeding trial of SD rats to ensure the reliability of research data. MethodsBackground data from six independent 90-day feeding trials of SD rats conducted by the National Center for Safety Evaluation of Drugs from 2020 to 2023 were summarized. These studies involved a blank control group of 120 SPF-grade 4-week-old SD rats, with an equal number of males and females, which were only given standard full-nutrient pelleted rat feed. After the quarantine period, the animals were observed for an additional 90 days, followed by intraperitoneal injection of Zoletil (50 mg/mL) for anesthesia, blood sampling, euthanasia, and necropsy. By analyzing the data from the blank control group, a relevant background database for SD rats was established. ResultsBoth male and female rats exhibited steady weight gain, with a more pronounced increase in male rats. Within 90 days, the average body weight of male and female rats increased to over 500 g and 300 g, respectively. Three weeks later, the average daily food intake of male rats stabilized at approximately 25~28 g per rat, while that of female rats remained stable at approximately 16~19 g per rat. The food utilization rate of all animals gradually decreased from the first week of the experiment. In the white blood cell (WBC) differential count results, significant differences were observed in the counts of WBCs, neutrophils (Neut), lymphocytes (Lymph), and monocytes (Mono) between males and females (P<0.001). However, there were no significant differences in the percentages of neutrophil (%Neut), lymphocyte (%Lymph), and monocyte (%Mono) between the sexes (P>0.05). The average red blood cell count (RBC), hemoglobin concentration (HGB), hematocrit (HCT), platelet count (PLT), prothrombin time (PT), and activated partial thromboplastin time (APTT) were higher in male animals than in female animals (P<0.05). The average values of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), creatine phosphokinase (CK), lactate dehydrogenase (LDH), glucose (GLU), and triglyceride (TG) in male rats were higher than those in female rats (P<0.05). The urinary pH range for male animals was 5.0 to 8.5, while for female animals it was 6.5 to 9.0. The majority of male animals had a urinary specific gravity lower than 1.020, and the majority of female animals had a urinary specific gravity lower than 1.015. The weights of various organs (excluding the adrenal glands and reproductive organs) in male animals were heavier than those in female animals (P<0.001), while the organ/body weight ratios (excluding the kidneys and reproductive organs) of female animals were higher than those of male animals (P<0.001). ConclusionThis study summarizes the background reference ranges for body weight, food intake, hematology, and serum biochemistry indicators in SPF-grade SD rats in the untreated control group from six 90-day feeding trials conducted by the National Center for Safety Evaluation of Drugs. It provides important reference data for related research. By summarizing the background and spontaneous histopathological changes in rats, this study aids in the standardization and normalization of subsequent research, as well as in the evaluation and analysis of abnormal results.

Result Analysis
Print
Save
E-mail