1. Resveratrol inhibits autophagy and promotes apoptosis in uveal melanoma cells via miR-512-3P/DUSPl axis
Zheng-Yang SUN ; Nan-Nan LIU ; Xue-Fei FAN ; Su-Huan CHEN ; Xiao-Yu CHEN ; Zheng-Yang SUN ; Wu-Qi CHEN ; Guang-Yi CHEN ; Yu-Bao SHAO ; Xiao-Yu CHEN
Chinese Pharmacological Bulletin 2024;40(2):292-298
Aim To investigate the regulatory role and mechanism of resveratrol in inhibiting autophagy and promoting apoptosis in choroidal melanoma cells. Methods Choroidal melanoma cells (MUM2B) were divided into control and experimental groups, and treated with different concentrations of resveratrol (0, 10, 20,40,60,80 μmol ·L
2.Structure-activity Omics of Traditional Chinese Medicine: A Case Study of Anti-inflammatory and Analgesic Effect of Qizhi Weitong Granules
Xiansheng MENG ; Ying ZHENG ; Ying MENG ; Bing QI ; Sicong LIU ; Xi LUO ; Xinpeng QIN ; Yongrui BAO ; Shuai WANG ; Tianjiao LI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(15):129-135
The complex chemical composition and limited research ideas of traditional Chinese medicine (TCM) have led to the unclear material basis and mechanism of the medicinal effects, which is a common problem hindering the modernization of TCM in China. The introduction of computer virtual technology has provided a new perspective for TCM research. In this study, we established the research method of structure-activity omics to study the relationships between the structures and effects of different compounds in TCM based on the chemical structures of TCM components and to analyze and predict the material basis and multitarget synergistic mechanism of TCM. Furthermore, a structure-activity omics study was carried out with the anti-inflammatory and analgesic effects of Qizhi Weitong granules as an example. This study provides support for screening the pharmacodynamic components and analyzing the active ingredients of TCM and gives insights into the research on the material basis and mechanism of compound efficacy and the development of lead compounds of TCM, thus promoting the modern research and the innovative development of TCM.
3.Structure-activity Omics on Anti-inflammatory and Analgesic Effect of Cyperi Rhizoma in Qizhi Weitong Granules
Ying ZHENG ; Sicong LIU ; Xi LUO ; Bing QI ; Shuai WANG ; Yongrui BAO ; Tianjiao LI ; Liang WANG ; Dong YAO ; Xiansheng MENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(21):153-160
ObjectiveTo elucidate the pharmacodynamic substances responsible for the anti-inflammatory and analgesic effects of Cyperi Rhizoma by structure-activity omics. MethodOn the basis of the previous in vitro efficacy study by our research group, this study explored the in vivo efficacy of the flavonoids in Cyperi Rhizoma. The flavonoids in Cyperi Rhizoma and their targets were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), PharmMapper, Swiss TargetPrediction, and available articles. The targets of the anti-inflammatory and analgesic effects were collected from DisGeNET and Online Mendelian Inheritance in Man (OMIM). The common targets shared by flavonoids and the effects were selected as the direct targets of flavonoids endowing Cyperi Rhizoma with anti-inflammatory and analgesic effects, and protein-protein interaction (PPI) network of the core targets was constructed. The method of structure-activity omics was employed to correlate the structure and efficacy of one or more classes of chemical components in Cyperi Rhizoma with the targets as a bridge. The components were classified according to structure. Molecular docking of components to core targets was carried out via SYBYL-X 2.1.1, PyMol, and Discovery Studio 4.5 visualizer. Two targets with the highest binding affinity were selected to explore the relationship between compound structures and targets. ResultThe flavonoids in Cyperi Rhizoma exerted anti-inflammatory and analgesic effects on the mouse model of pain induced by formaldehyde. Eighteen components and 115 direct targets were screened out, and the core targets with high activities were protein kinase B1 (Akt1), interleukin-1β (IL-1β), cellular tumor antigen p53 (TP53), prostaglandin-endoperoxide synthase 2 (PTGS2), and matrix metalloproteinase-9 (MMP-9). According to the structures, the flavonoids in Cyperi Rhizoma were classified into bioflavonoids, flavonols, flavones, and flavanes. The molecular docking results showed that flavonoids of Cyperi Rhizoma had the highest binding affinity to TP53 and PTGS2. The results of structure-activity omics showed that bioflavonoids represented the best binding structure to the targets, while their polyhydroxyl etherification resulted in a significant decrease in the binding affinity to PTGS2. Glycosides had higher binding affinity to PTGS2. The introduction of the long-chain hydrocarbon group to the A ring of flavonols facilitated the binding to TP53, while the change of B ring substituents was not the main factor affecting the binding affinity. The 3,4-dihydroxyl flavane outperformed 3-hydroxyl flavane in the binding to TP53, while the two compounds showed similar binding affinity to PTGS2. ConclusionThe method of structure-activity omics was used to analyze the material basis for the anti-inflammatory and analgesic effects of flavonoids in Cyperi Rhizoma. Structure-activity omics provides new ideas for revealing the pharmacodynamic substances of traditional Chinese medicine.
4.Structure-activity Omics on Anti-inflammatory and Analgesic Effect of Paeoniae Radix Alba in Qizhi Weitong Granules
Bing QI ; Xi LUO ; Ying ZHENG ; Ying MENG ; Shuai WANG ; Yongrui BAO ; Tianjiao LI ; Ling HAN ; Xinying SHU ; Xiansheng MENG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(21):169-175
ObjectiveTo elucidate the active compounds for the anti-inflammatory and analgesic effects of Paeoniae Radix Alba from structure-activity omics. MethodOn the basis of the previous in vitro efficacy study by our research group, a mouse model of foot swelling was induced by methyl aldehyde and used to study the anti-inflammatory and analgesic effects of total glycosides of Paeoniae Radix Alba in vivo. The core targets of the active compounds for the anti-inflammatory and analgesic effects of Paeoniae Radix Alba were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Online Mendelian Inheritance in Man (OMIM), and Search Tool for Recurring Instances of Neighbouring Genes (STRING). Molecular docking was conducted for the total glucosides of Paeoniae Radix Alba with the core targets, and the key core targets with high binding affinity were screened out according to the comprehensive score of each target and active structure. The structure-activity relationship was analyzed with targets as a bridge through the combination of compound structures and pharmacological effects. ResultThe total glucosides of Paeoniae Radix Alba had good anti-inflammatory and analgesic effects in vivo. The core targets of 23 active components of Paeoniae Radix Alba were epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), vascular endothelial growth factor A (VEGFA), cellular tumor antigen p53 (TP53), and proto-oncogene transcription factor (JUN). According to the structure of the parent nucleus, there were 16 pinane monoterpene glycosides, 4 pinene monoterpene glycosides, 2 monoterpene lactone glycosides, and 1 monoterpene ketone. The key core targets screened out by molecular docking were EGFR and STAT3. The structure-activity analysis of the active compound structures and the key core targets showed that the introduction of ketone group and benzene ring group on the parent nucleus affected the binding activity. ConclusionThis study analyzed the material basis for the anti-inflammatory and analgesic effects of total glycosides of Paeoniae Radix Alba from structure-activity omics, providing new ideas and methods for revealing the pharmacodynamic substances in traditional Chinese medicine.
5.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
6.Clinical study of percutaneous transluminal coronary intravascular lithotripsy angioplasty for severe left main coronary artery calcification guided by intravascular ultrasound percutaneous coronary
Feng-Qi LIU ; Jun BAO ; Bai-Hong LI ; Chong-Hao CHEN ; Chang-Zheng GAO ; Yun-Feng GUO ; Xin GU ; Jian-Bin GU ; Xiao-Yan WANG
Chinese Journal of Interventional Cardiology 2024;32(7):383-389
Objective To explore the effectiveness and safety of percutaneous coronary artery shock wave balloon angioplasty(IVL)under the guidance of intravascular ultrasound(IVUS)for the treatment of severe calcification lesions in the left main artery(LM).Methods A total of 26 patients with severe LM(mouth,body,bifurcation)calcification admitted to Jiangnan University Affiliated Hospital from October 2022 to April 2024 were included,with an average age of 72.0(61.8,75.4)years.Under the guidance of IVUS,IVL was used for pre-treatment of calcified lesions,followed by percutaneous coronary intervention(PCI)with stent/drug balloon implantation.All patients were evaluated using IVUS before and after the use of IVL and after PCI.And compare the IVUS intracavity related data before and after treatment[plaque burden(PB)、minimum lumen area(MLA)、minimum lumen diameter(MLD)]and calcification fracture number,minimum stent area(MSA),stent expansion coefficient(expansion,EXP),etc.Results There were 26 patients(2 with opening lesions,7 with body lesions,and 17 with bifurcation lesions at the end of the main trunk),including 7 with stable angina pectoris(SAP),10 with unstable angina(UA),4 with acute ST-segment elevation myocardial infarction(STEMI),and 5 with non ST-segment elevation myocardial infarction(NSTEMI).The PB at the most severe site of calcification decreased by 79.50(76.00,83.75)%compared to 80.00(76.00,83.75)%after IVL(P=0.001),MLA increased by 3.39(3.14,3.68)mm2 compared to 3.38(3.14,3.67)mm2 after IVL(P=0.039),MLD increased by 3.21(3.07,3.30)mm compared to 3.20(3.07,3.30)mm after IVL(P=0.024),and there was 100%calcification rupture(1/2 cases,2/9 cases,≥3/15 cases).The stent/drug ball was successfully implanted 100%,with EXP of(89.15±4.42)%and an MSA of 7.20(6.46,7.45)mm2.No adverse events such as death,angina or recurrent myocardial infarction occurred during the 3 months follow-up after surgery.Conclusions After evaluation by IVUS and pre-treatment with IVL,PCI was successfully completed for severe calcification lesions in LM,and IVL can be used as an option for the treatment of severe calcification in LM.
7.Meta-analysis on the incidence of long COVID in Omicron-infected pa-tients
Li-Yu WANG ; Shi-Wei WU ; Meng-Qi XU ; Bao-Guang LIU ; Lan-Ying PEI ; Guo-Li YAN ; Guan-Min ZHENG
Chinese Journal of Infection Control 2024;23(11):1384-1390
Objective To explore the incidence of long CO VID symptoms in patients infected with Omicron variant of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).Methods According to the inclusion and exclu-sion criteria of literatures,relevant studies without language restrictions published up to 2024 were retrieved from both Chinese and English databases.The Chinese databases were China National Knowledge Infrastructure(CNKI),Wanfang Database,and VIP databases,and the foreign databases were PubMed,Embase,and Web of Science.Three-step screening was used to select literatures,and Stata 17.0 software was used for analysis.Results The incidence of at least one sequelae in patients infected with Omicron variant was 29.62%.The most common symptoms included fatigue(19.10%),joint or muscle pain(11.06%),memory loss(9.71%),brain fog(8.80%),cough(8.42%),headache(7.26%),and sore throat(6.68%).Subgroup analysis results showed that with the extension of follow-up(3 months vs 6 months),the incidence of smell or taste changes was significantly re-duced(7.22%vs 0.78%).The higher the proportion of women(<50%vs 50%-65%vs>65%),the higher the incidence of joint or muscle pain(1.09%vs 4.62%vs 19.53%);the greater the median age(≥45 years vs<45 years),the higher the incidence of chest pain or chest distress(0.90%vs 3.86%),all with statistically significant differences(all P<0.05).Conclusion Incidence of long COVID in Omicron-infected patients is high and can cause various symptoms.Follow-up time,median age and gender proportion have significant impacts on the incidence of some symptoms.
8.Failures and successes learned from 160 years of echinococcosis control and countermeasures in China
Chuan-Chuan WU ; Zhuang-Zhi ZHANG ; Jun LI ; Wen-Jing QI ; Jian-Ping CAO ; Can-Jun ZHENG ; Wen-Bao ZHANG
Chinese Journal of Zoonoses 2024;40(5):464-470
The transmission cycle of echinococcosis was established in 1853.More than 160 years have elapsed since Iceland initiated control measures to break the transmission cycle of echinococcosis in 1863.Control plans have been implemented in more than a dozen countries/territories,and lessons have been learned from failures as well as successes.In this review,we fo-cus on the failure experiences,which have also promoted successes in the control of cystic echinococcosis(caused by the para-site Echinococcus granulosus)in regions including Iceland,New Zealand,Uruguay,Wales(England),Turkana(Kenya),and Sardinia(Italy).The causes of the failures were analyzed,and the effects of health education,dog deworming,and con-trol measures for infected animal slaughter on echinococcosis control are comprehensively summarized.However,no suc-cessful experience has been reported in the control of alveolar echinococcosis(caused by the parasite Echinococcus multilocu-laris).On the basis of the biological characteristics of E.mul-tilocularis parasitization in dogs for a duration of 30 days and larvae parasitization in rodents,the fundamental measure for controlling alveolar echinococcosis is administration of monthly deworming treatments to dogs in high prevalence areas.
9.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.
10.Biomechanical Evaluation of 2 Endoscopic Spine Surgery Methods for Treating Lumbar Disc Herniation: A Finite Element Study
Yang ZOU ; Shuo JI ; Hui Wen YANG ; Tao MA ; Yue Kun FANG ; Zhi Cheng WANG ; Miao Miao LIU ; Ping Hui ZHOU ; Zheng Qi BAO ; Chang Chun ZHANG ; Yu Chen YE
Neurospine 2024;21(1):273-285
Objective:
This study aimed to evaluate the effects of 2 endoscopic spine surgeries on the biomechanical properties of normal and osteoporotic spines.
Methods:
Based on computed tomography images of a healthy adult volunteer, 6 finite element models were created. After validating the normal intact model, a concentrated force of 400 N and a moment of 7.5 Nm were exerted on the upper surface of L3 to simulate 6 physiological activities of the spine. Five types of indices were used to assess the biomechanical properties of the 6 models, range of motion (ROM), maximum displacement value, intervertebral disc stress, maximum stress value, and articular protrusion stress, and by combining them with finite element stress cloud.
Results:
In normal and osteoporotic spines, there was no meaningful change in ROM or disc stress in the 2 surgical models for the 6 motion states. Model N1 (osteoporotic percutaneous transforaminal endoscopic discectomy model) showed a decrease in maximum displacement value of 20.28% in right lateral bending. Model M2 (unilateral biportal endoscopic model) increased maximum displacement values of 16.88% and 17.82% during left and right lateral bending, respectively. The maximum stress value of L4–5 increased by 11.72% for model M2 during left rotation. In addition, using the same surgical approach, ROM, maximum displacement values, disc stress, and maximum stress values were more significant in the osteoporotic model than in the normal model.
Conclusion
In both normal and osteoporotic spines, both surgical approaches were less disruptive to the physiologic structure of the spine. Furthermore, using the same endoscopic spine surgery, normal spine biomechanical properties are superior to osteoporotic spines.

Result Analysis
Print
Save
E-mail