1.Mechanisms of Gut Microbiota Influencing Reproductive Function via The Gut-Gonadal Axis
Ya-Qi ZHAO ; Li-Li QI ; Jin-Bo WANG ; Xu-Qi HU ; Meng-Ting WANG ; Hai-Guang MAO ; Qiu-Zhen SUN
Progress in Biochemistry and Biophysics 2025;52(5):1152-1164
Reproductive system diseases are among the primary contributors to the decline in social fertility rates and the intensification of aging, posing significant threats to both physical and mental health, as well as quality of life. Recent research has revealed the substantial potential of the gut microbiota in improving reproductive system diseases. Under healthy conditions, the gut microbiota maintains a dynamic balance, whereas dysfunction can trigger immune-inflammatory responses, metabolic disorders, and other issues, subsequently leading to reproductive system diseases through the gut-gonadal axis. Reproductive diseases, in turn, can exacerbate gut microbiota imbalance. This article reviews the impact of the gut microbiota and its metabolites on both male and female reproductive systems, analyzing changes in typical gut microorganisms and their metabolites related to reproductive function. The composition, diversity, and metabolites of gut bacteria, such as Bacteroides, Prevotella, and Firmicutes, including short-chain fatty acids, 5-hydroxytryptamine, γ-aminobutyric acid, and bile acids, are closely linked to reproductive function. As reproductive diseases develop, intestinal immune function typically undergoes changes, and the expression levels of immune-related factors, such as Toll-like receptors and inflammatory cytokines (including IL-6, TNF-α, and TGF-β), also vary. The gut microbiota and its metabolites influence reproductive hormones such as estrogen, luteinizing hormone, and testosterone, thereby affecting folliculogenesis and spermatogenesis. Additionally, the metabolism and absorption of vitamins can also impact spermatogenesis through the gut-testis axis. As the relationship between the gut microbiota and reproductive diseases becomes clearer, targeted regulation of the gut microbiota can be employed to address reproductive system issues in both humans and animals. This article discusses the regulation of the gut microbiota and intestinal immune function through microecological preparations, fecal microbiota transplantation, and drug therapy to treat reproductive diseases. Microbial preparations and drug therapy can help maintain the intestinal barrier and reduce chronic inflammation. Fecal microbiota transplantation involves transferring feces from healthy individuals into the recipient’s intestine, enhancing mucosal integrity and increasing microbial diversity. This article also delves into the underlying mechanisms by which the gut microbiota influences reproductive capacity through the gut-gonadal axis and explores the latest research in diagnosing and treating reproductive diseases using gut microbiota. The goal is to restore reproductive capacity by targeting the regulation of the gut microbiota. While the gut microbiota holds promise as a therapeutic target for reproductive diseases, several challenges remain. First, research on the association between gut microbiota and reproductive diseases is insufficient to establish a clear causal relationship, which is essential for proposing effective therapeutic methods targeting the gut microbiota. Second, although gut microbiota metabolites can influence lipid, glucose, and hormone synthesis and metabolism via various signaling pathways—thereby indirectly affecting ovarian and testicular function—more in-depth research is required to understand the direct effects of these metabolites on germ cells or granulosa cells. Lastly, the specific efficacy of gut microbiota in treating reproductive diseases is influenced by multiple factors, necessitating further mechanistic research and clinical studies to validate and optimize treatment regimens.
2.The Role and Mechanism of Circadian Rhythm Regulation in Skin Tissue Regeneration
Ya-Qi ZHAO ; Lin-Lin ZHANG ; Xiao-Meng MA ; Zhen-Kai JIN ; Kun LI ; Min WANG
Progress in Biochemistry and Biophysics 2025;52(5):1165-1178
Circadian rhythm is an endogenous biological clock mechanism that enables organisms to adapt to the earth’s alternation of day and night. It plays a fundamental role in regulating physiological functions and behavioral patterns, such as sleep, feeding, hormone levels and body temperature. By aligning these processes with environmental changes, circadian rhythm plays a pivotal role in maintaining homeostasis and promoting optimal health. However, modern lifestyles, characterized by irregular work schedules and pervasive exposure to artificial light, have disrupted these rhythms for many individuals. Such disruptions have been linked to a variety of health problems, including sleep disorders, metabolic syndromes, cardiovascular diseases, and immune dysfunction, underscoring the critical role of circadian rhythm in human health. Among the numerous systems influenced by circadian rhythm, the skin—a multifunctional organ and the largest by surface area—is particularly noteworthy. As the body’s first line of defense against environmental insults such as UV radiation, pollutants, and pathogens, the skin is highly affected by changes in circadian rhythm. Circadian rhythm regulates multiple skin-related processes, including cyclic changes in cell proliferation, differentiation, and apoptosis, as well as DNA repair mechanisms and antioxidant defenses. For instance, studies have shown that keratinocyte proliferation peaks during the night, coinciding with reduced environmental stress, while DNA repair mechanisms are most active during the day to counteract UV-induced damage. This temporal coordination highlights the critical role of circadian rhythms in preserving skin integrity and function. Beyond maintaining homeostasis, circadian rhythm is also pivotal in the skin’s repair and regeneration processes following injury. Skin regeneration is a complex, multi-stage process involving hemostasis, inflammation, proliferation, and remodeling, all of which are influenced by circadian regulation. Key cellular activities, such as fibroblast migration, keratinocyte activation, and extracellular matrix remodeling, are modulated by the circadian clock, ensuring that repair processes occur with optimal efficiency. Additionally, circadian rhythm regulates the secretion of cytokines and growth factors, which are critical for coordinating cellular communication and orchestrating tissue regeneration. Disruptions to these rhythms can impair the repair process, leading to delayed wound healing, increased scarring, or chronic inflammatory conditions. The aim of this review is to synthesize recent information on the interactions between circadian rhythms and skin physiology, with a particular focus on skin tissue repair and regeneration. Molecular mechanisms of circadian regulation in skin cells, including the role of core clock genes such as Clock, Bmal1, Per and Cry. These genes control the expression of downstream effectors involved in cell cycle regulation, DNA repair, oxidative stress response and inflammatory pathways. By understanding how these mechanisms operate in healthy and diseased states, we can discover new insights into the temporal dynamics of skin regeneration. In addition, by exploring the therapeutic potential of circadian biology in enhancing skin repair and regeneration, strategies such as topical medications that can be applied in a time-limited manner, phototherapy that is synchronized with circadian rhythms, and pharmacological modulation of clock genes are expected to optimize clinical outcomes. Interventions based on the skin’s natural rhythms can provide a personalized and efficient approach to promote skin regeneration and recovery. This review not only introduces the important role of circadian rhythms in skin biology, but also provides a new idea for future innovative therapies and regenerative medicine based on circadian rhythms.
3.Danggui Shaoyaosan Regulates Nrf2/SLC7A11/GPX4 Signaling Pathway to Inhibit Ferroptosis in Rat Model of Non-alcoholic Fatty Liver Disease
Xinqiao CHU ; Yaning BIAO ; Ying GU ; Meng LI ; Tiantong JIANG ; Yuan DING ; Xiaping TAO ; Shaoli WANG ; Ziheng WEI ; Zhen LIU ; Yixin ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):35-42
ObjectiveTo investigate the effect of Danggui Shaoyaosan on ferroptosis in the rat model of non-alcoholic fatty liver disease (NAFLD) and explore the underlying mechanism based on the nuclear factor E2-related factor 2 (Nrf2)/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway. MethodsThe sixty SD rats were randomly grouped as follows: control, model, Yishanfu (0.144 g·kg-1), and low-, medium-, and high-dose (2.44, 4.88, and 9.76 g·kg-1, respectively) Danggui Shaoyaosan. A high-fat diet was used to establish the rat model of NAFLD. After 12 weeks of modeling, rats were treated with corresponding agents for 4 weeks. Then, the body weight and liver weight were measured, and the liver index was calculated. At the same time, serum and liver samples were collected. The levels or activities of total cholesterol (TC), triglycerides (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and Fe2+ in the serum and TC, TG, free fatty acids (FFA), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX), and Fe2+ in the liver were measured. Hematoxylin-eosin staining and oil red O staining were employed to observe the pathological changes in the liver. Immunofluorescence was used to assess the reactive oxygen species (ROS) content in the liver. Mitochondrial morphology was observed by transmission electron microscopy. The protein levels of Nrf2, SLC7A11, GPX4, transferrin receptor 1 (TFR1), and divalent metal transporter 1 (DMT1) in the liver were determined by Western blot. ResultsCompared with the control group, the model group showed increases in the body weight, liver weight, liver index, levels or activities of TC, TG, ALT, AST, and Fe2+ in the serum, levels of TC, TG, FFA, MDA, Fe2+, and ROS in the liver, and protein levels of TFR1 and DMT1 in the liver (P<0.01), and decreases in the activities of SOD, GPX and the protein levels of Nrf2, SLC7A11, and GPX4 in the liver (P<0.05, P<0.01). Meanwhile, the liver tissue in the model group presented steatosis, iron deposition, mitochondrial shrinkage, and blurred or swollen mitochondrial cristae. Compared with the model group, all doses of Danggui Shaoyaosan reduced the body weight, liver weight, liver index, levels or activities of TC, TG, ALT, AST, and Fe2+ in the serum, levels of TC, TG, FFA, MDA, Fe2+, and ROS in the liver, and protein levels of TFR1 and DMT1 in the liver (P<0.01), while increasing the activities of SOD and GPX and the protein levels of Nrf2, SLC7A11, and GPX4 in the liver (P<0.01). Furthermore, Danggui Shaoyaosan alleviated steatosis, iron deposition, and mitochondrial damage in the liver. ConclusionDanggui Shaoyaosan may inhibit lipid peroxidation and ferroptosis by activating the Nrf2/SLC7A11/GPX4 signaling pathway to treat NAFLD.
4.Clinical application of Visual throat forceps in the removal of hypopharyngeal foreign body.
Zhonghua MENG ; Qirui ZOU ; Zhongcheng XING ; Shangqing ZHOU ; Zhen ZHANG ; Ye WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):80-82
Objective:To explore the feasibility of using self-made visual throat forceps to remove hypopharyngeal foreign bodies. Methods:The throat forceps were combined with the endoscope and connected to a monitor via a data cable resulting in a visual throat forceps apparatus. This device was utilized to examine and treat the hypopharyngeal foreign bodies. Results:Among 53 patients, foreign bodies were detected in 51,with 48 cases involving hypopharyngeal foreign bodies. All were successfully extracted using the visual throat forceps. Three cases, diagnosed as esophageal foreign bodies by electronic gastroscopy, were treated using the same method. Conclusion:Visual throat forceps can be used to examine the hypopharynx and remove foreign bodies. It has the advantages of simple operation, rapid operation, and high success rate of foreign body removal from the hypopharynx. It is worthy of clinical application.
Humans
;
Hypopharynx/surgery*
;
Pharynx/surgery*
;
Endoscopes
;
Surgical Instruments
;
Foreign Bodies/diagnosis*
5.Cold and Heat in Acute Coronary Syndrome: A Review
Xuejiao WANG ; Zhen SHAO ; Chao MENG ; Chunyun JIANG ; Hengwen CHEN ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(6):246-252
Cold and heat belong to the eight-principal syndrome differentiation of traditional Chinese medicine, which can reflect the rise and fall of Yin and Yang in the body and the Yin and Yang nature of the disease. At present, traditional Chinese medicine has an inconsistent understanding of cold and heat in acute coronary syndrome. The emphasis on pathogenic factors of cold and heat is biased, and the elements of cold and heat syndrome are not fully reflected in the scale. Therefore, the literature has been reviewed from the perspectives of etiology, pathogenesis, symptom elements, and test signs with drugs. From the perspective of etiology, both cold evil and heat evil can increase the risk of acute coronary syndrome. It was previously believed that acute coronary syndrome occurs frequently in cold climates such as winter and spring. Based on this understanding, hot weather can also induce acute coronary syndrome, and different temperatures have different effects on patients of different ages and with different underlying diseases. In addition, artificial pathogenic factors such as excessive consumption of cold food and refrigeration air conditioners were added. From the perspective of pathogenesis, on the basis of the traditional ''asthenia in origin and asthenia in superficiality'' and ''phlegm stagnation'', it is found that Yin-cold and fire-heat can both cause paralysis of the heart chakra and pain induced by the blockage. The pathogenesis of acute coronary syndrome characterized by heat stagnation and coldness featuring heartburn should be distinguished from gastroesophageal reflux disease. Moreover, the pathogenesis of Yin cold coagulation and pulse stagnation and wind obstruction are different. The acute coronary syndrome is in line with the wind characteristics of frequent changes and can be treated with wind medicine. From the perspective of syndrome elements, the syndrome elements such as cold condensation, heat accumulation, and toxicity are analyzed, and the use of basic syndrome elements and their combination forms facilitates clinical and scientific research. In addition, according to the test sign with the drug, it can be seen that the attributes of cold and heat of traditional Chinese medicine prescriptions for acute coronary syndrome can be explained according to the temperature-sensitive transient receptor potential (TRP) ion channel, thus proving the pathogenesis of cold and heat of acute coronary syndrome.
6.Effect of nalbuphine hydrochloride combined with dexmedetomidine on post-operative recovery quality and pain in patients undergoing laparoscopic bariatric surgery
Jinyan FAN ; Lili CHEN ; Su LIU ; Ch-Uanwu ZHANG ; Zhen′ang MENG ; Guanglei WANG
The Journal of Practical Medicine 2024;40(7):996-1001
Objective To investigate the effects of nalbuphine combined with dexmedetomidine on postop-erative recovery quality and pain in patients who undergoing laparoscopic bariatric surgery.Methods A total of 169 patients who underwent laparoscopic bariatric surgery at our hospital were included and divided into control group(group C),nalbuphine group(group N),dexmedetomidine group(group D),and nalbuphine combined with dexme-detomidine group(group ND)using randomised numerical table method.Group C received intravenous injection of saline,group N and group ND received intravenous injection of nalbuphine before the end of the surgery,and group D and group ND received pumping of dexmedetomidine before anesthesia induction and during surgery.Compare the postoperative recovery quality score(QoR-40),hemodynamics at different time points,visual analogue scale score(VAS),sedation-agitation scale(SAS),first time out of bed activity and exhaust time,and incidence of nausea and vomiting among four groups.Results The postoperative QoR-40 scores of patients in group ND were better than those in group C and group N(P<0.05),and the QoR-40 scores in group D were better than those in group C(P<0.05).MAP and HR were more stable during the awakening period in group ND and group D(P<0.05).Compared with group C,patients in all three groups had lower VAS scores and SAS scores(P<0.05)and consumed less remedial analgesic medication(P<0.05).In terms of adverse reactions,the incidence of postoperative nausea,vomiting and coughing in the group ND was lower than that in the group C(P<0.05).Conclusion The combination of nalbuphine and dexmedetomidine could improve the quality of postoperative recovery and pain in patients under-going laparoscopic bariatric surgery,reduce hemodynamic fluctuations during the patients′ recovery period,reduce the incidence of nausea and vomiting,and improve the patients′ prognosis.
7.3D-printed scaffolds repair infected bone defects
Bo DONG ; Xiaoyu LI ; Birong LI ; Zhen LI ; Zixuan WANG ; Zhaoyi YIN ; Weiyan MENG
Chinese Journal of Tissue Engineering Research 2024;28(29):4685-4690
BACKGROUND:At present,the treatment of infected bone defects has the problems of long course of disease,poor treatment effect and high cost.The osteogenic effect of personalized bone replacement materials in clinical treatment is limited.Therefore,a 3D-printed bone graft material with both good osteogenic effect and antibacterial effect is urgently needed for clinical treatment. OBJECTIVE:To summarize the research status of 3D-printed scaffolds loaded with antimicrobial agents for the treatment of infected bone defects. METHODS:PubMed,Web of Science,Elsevier,and CNKI databases from January 2010 to June 2022 were searched for related articles.The Chinese search terms were"bone defect,3D printing,scaffold material,antibacterial,animal experiments,in vitro experiments".English search terms were"bone defect,3D printing,scaffold,antibiosis,animal experiment,in vitro".Finally,60 articles were included for review and analysis. RESULTS AND CONCLUSION:The 3D scaffolds made of titanium,magnesium,tantalum and other metals and their alloys have certain osteogenic properties,but do not have antibacterial function.Hydroxyapatite and other bioceramic materials have good biocompatibility and are prone to be degraded,whereas due to the lack of strength,they are usually combined with artificial polymer materials to form composite materials,which respectively mimic the inorganic and organic components in natural bone,and play their respective excellent functions.Antibiotics,silver/copper nanoparticles,antimicrobial peptides,gallium and other antibacterial agents play an antibacterial role by destroying bacterial cell membrane,producing reactive oxygen species to interfere with bacterial DNA replication,inhibiting iron absorption and other mechanisms.As a result,the 3D-printed scaffold has both antibacterial and osteogenic effects.However,there are still some problems such as drug resistance and difficult to control effective concentrations.3D-printed scaffolds are often loaded with antibacterial agents by loading drug-loaded microspheres on scaffolds,preparing antibacterial coating on the scaffold surface,and participating in joint 3D printing with drugs.The loading mode of antibacterial coating prepared on the scaffold surface is the most widely used,and its antibacterial effect is more stable.Nonetheless,the selection of the most suitable loading mode for antibacterial agents needs to be further discussed and summarized.It is a future research prospect to optimize the mechanical properties of composite scaffolds and prepare biomimetic bone scaffolds so that the degradation rate is consistent with the bone reconstruction rate in infected bone defects.The ideal antibacterial agents may play a role through a variety of antibacterial mechanisms,thus being expected to play a good antibacterial effect through low antibacterial concentration,which should be a hot spot of anti-bone infection research.After loading antibacterial agents on the surface of the scaffold,antibacterial agents can"intelligently"react to the local microenvironment,achieving controlled release,and regulating the osteogenesis,vascularization and immune response of the microenvironment,which is the focus of current research.
8.Clinical study of sacubitril valsartan sodium combined with Wenxin granule in the treatment of hyper-tension complicated with paroxysmal atrial fibrillation
Yong HOU ; Lian-Fa WANG ; Hong-Tao LU ; Zhen CHEN ; Meng-Xun HUANG ; Chen CHEN ; Bang-Zhu ZHANG ; Quan-Xiu TONG ; Yun-Fei WANG
Chinese Journal of cardiovascular Rehabilitation Medicine 2024;33(1):40-44
Objective:To explore therapeutic effect of sacubitril valsartan sodium combined with Wenxin granule in the treatment of hypertension complicated with paroxysmal atrial fibrillation(AF)and its effect on cardiac electro-physiological structure.Methods:A total of 116 patients with hypertension and paroxysmal atrial fibrillation treated in our hospital from Oct 2021 to Nov 2022 were consecutively selected.According to random number table,they were divided into Wenxin granule group(received Wenxin granule treatment based on routine antihypertensive ther-apy)and combined treatment group(received sacubitril valsartan sodium combined Wenxin granule therapy based on routine antihypertensive therapy)with 58 cases in each group,and both groups were consecutively treated for six months.Clinical symptom score,AF burden,P wave duration,P wave dispersion,left atrial diameter(LAD),left ventricular end-diastolic diameter(LVEDd)and left ventricular ejection fraction(LVEF)were compared between two groups before and after treatment.Results:After treatment,compared with Wenxin granule group,there were significant reductions in clinical symptom score[(1.66±0.69)scores vs.(1.40±0.53)scores],AF burden[4.43(1.65)%vs.1.62(3.50)%],P wave duration[(112.17±6.46)ms vs.(109.29±8.59)ms],P wave dispersion[(32.47±8.11)ms vs.(29.02±7.49)ms]and LAD[(34.83±3.41)mm vs.(33.40±3.74)mm]in combined treatment group(P<0.05 or<0.01).There were no significant difference in LVEDd and LVEF between two groups,P>0.05 both.Conclusion:Sacubitril valsartan sodium combined with Wenxin granule can significantly im-prove clinical symptoms and atrial fibrillation burden,reduce the susceptibility to atrial fibrillation,and inhibit atrial electrical remodeling and structural remodeling in patients with hypertension complicated with paroxysmal atrial fi-brillation.
9.Application of CRISPR/Cas System-integrated Paper-based Analytical Devices for Rapid Detection of Foodborne Pathogens
Peng-Ru LI ; Xing SHEN ; Jing-Nan MENG ; Lin LUO ; Juan WANG ; Zhen-Lin XU
Progress in Biochemistry and Biophysics 2024;51(5):1147-1160
Foods can be contaminated with foodborne pathogens through a variety of pathways, including water, air and soil. Food safety events caused by foodborne pathogens show a serious impact on human health. However, due to the diversity of foodborne pathogens and the complexity of food matrices, the rapid detection of foodborne pathogens was difficult. The conventional microbial culture and physiological and biochemical identification can hardly meet the need of rapid detection of foodborne pathogens in the field. It is necessary to develop rapid detection technologies for foodborne pathogens. Clustered regularly interspaced short palindromic repeats (CRISPR) and associated protein (Cas) are an adaptive immune systems of prokaryotes with specific recognition and cleavage of nucleic acid sequences, which shows good potential for development of nucleic acid detection and biosensing in the field. According to different forms of application, paper-based analytical devices can be categorized into test paper, lateral flow assay and microfluidic paper-based chips, etc. As a good simplicity and low-cost analytical testing tools, they show good prospects in the field of rapid testing. Therefore, the rapid and sensitive detection of foodborne pathogens can be realized by combining the efficient recognition ability of CRISPR/Cas system and the simplicity of paper-based analytical devices. In this paper, we briefly introduce an overview of the CRISPR/Cas system for nucleic acid detection, and this section focuses on an overview of the features and principles of the class 2 system, including types II, V and VI, which uses a single effector. The application of CRISPR/Cas system based test paper analysis, lateral flow assay and microfluidic paper-based chips for the detection of foodborne pathogens are highlighted in the paper, and finally the advantages, current challenges and future prospects of CRISPR/Cas system in combination with paper-based analytical devices to establish detection methods are discussed.
10.Effects of Ophiopogonis Root Decoction on a mouse model of idiopathic pulmonary fibrosis based on PD-1/PD-L1 signaling pathway
Meng-Zhen XU ; Chuan-Guo LIU ; Li-Li GONG ; Hai-Hong CHEN ; Dong WANG ; Qing-Jun ZHU
Chinese Traditional Patent Medicine 2024;46(2):437-443
AIM To investigate the effects of Ophiopogonis Root Decoction on bleomycin(BLM)-induced idiopathic pulmonary fibrosis(IPF)in mice and to explore its metabolic modulation of immunity.METHODS The IPF mouse model was constructed by tracheal drip injection of BLM,and the mice were randomly divided into the control group,the model group,the pirfenidone group(0.3 g/kg)and the high,medium and low dose groups of Ophiopogonis Root Decoction(18,9,4.5 g/kg).HE and Masson staining,ELISA,flow cytometry and immunohistochemistry were used to detect the histopathological changes of the lung,the levels of Collagen I,HYP and TGF-β1,the proportion of PD-1+ CD4+T cells in plasma,and the expressions of p-STAT3,PD-1,PD-L1 and IL-17A in lung tissue,respectively.RESULTS Compared with the control group,the model group displayed significantly higher level of lung coefficients(P<0.01),more severe pulmonary inflammatory cell infiltration and collagen fiber deposition,and increased pulmonary fibrosis score(P<0.01),increased levels of Collagen I,HYP and TGF-β1(P<0.01),increased proportion of PD-1+ CD4+ T cells in plasma(P<0.01),increased pulmonary expression of p-STAT3,PD-1,PD-L1 and IL-17A(P<0.01).Compared with the model group,the Ophiopogonis Root Decoction groups shared lower levels of lung coefficients(P<0.05),less pulmonary inflammatory cell infiltration and collagen fiber deposition,decreased pulmonary fibrosis score(P<0.05),decreased levels of Collagen I,HYP and TGF-β1(P<0.05),decreased proportion of PD-1+ CD4+T cells in plasma(P<0.05),and decreased pulmonary expression of p-STAT3,PD-1,PD-L1,and IL-17A(P<0.05).CONCLUSION Ophiopogonis Root Decoction can significantly reduce extracellular matrix(ECM)deposition and curb the progression of IPF via inhibition of STAT3/PD-1/PD-L1 immunomodulatory signaling pathway.

Result Analysis
Print
Save
E-mail