1.The Near-infrared II Emission of Gold Clusters and Their Applications in Biomedicine
Zhen-Hua LI ; Hui-Zhen MA ; Hao WANG ; Chang-Long LIU ; Xiao-Dong ZHANG
Progress in Biochemistry and Biophysics 2025;52(8):2068-2086
Optical imaging is highly valued for its superior temporal and spatial resolution. This is particularly important in near-infrared II (NIR-II, 1 000-3 000 nm) imaging, which offers advantages such as reduced tissue absorption, minimal scattering, and low autofluorescence. These characteristics make NIR-II imaging especially suitable for deep tissue visualization, where high contrast and minimal background interference are critical for accurate diagnosis and monitoring. Currently, inorganic fluorescent probes—such as carbon nanotubes, rare earth nanoparticles, and quantum dots—offer high brightness and stability. However, they are hindered by ambiguous structures, larger sizes, and potential accumulation toxicity in vivo. In contrast, organic fluorescent probes, including small molecules and polymers, demonstrate higher biocompatibility but are limited by shorter emission wavelengths, lower quantum yields, and reduced stability. Recently, gold clusters have emerged as a promising class of nanomaterials with potential applications in biocatalysis, fluorescence sensing, biological imaging, and more. Water-soluble gold clusters are particularly attractive as fluorescent probes due to their remarkable optical properties, including strong photoluminescence, large Stokes shifts, and excellent photostability. Furthermore, their outstanding biocompatibility—attributed to good aqueous stability, ultra-small hydrodynamic size, and high renal clearance efficiency—makes them especially suitable for biomedical applications. Gold clusters hold significant potential for NIR-II fluorescence imaging. Atomic-precision gold clusters, typically composed of tens to hundreds of gold atoms and measuring only a few nanometers in diameter, possess well-defined three-dimensional structures and clear spatial coordination. This atomic-level precision enables fine-tuned structural regulation, further enhancing their fluorescence properties. Variations in cluster size, surface ligands, and alloying elements can result in distinct physicochemical characteristics. The incorporation of different atoms can modulate the atomic and electronic structures of gold clusters, while diverse ligands can influence surface polarity and steric hindrance. As such, strategies like alloying and ligand engineering are effective in enhancing both fluorescence and catalytic performance, thereby meeting a broader range of clinical needs. In recent years, gold clusters have attracted growing attention in the biomedical field. Their application in NIR-II imaging has led to significant progress in vascular, organ, and tumor imaging. The resulting high-resolution, high signal-to-noise imaging provides powerful tools for clinical diagnostics. Moreover, biologically active gold clusters can aid in drug delivery and disease diagnosis and treatment, offering new opportunities for clinical therapeutics. Despite the notable achievements in fundamental research and clinical translation, further studies are required to address challenges related to the standardized synthesis and complex metabolic behavior of gold clusters. Resolving these issues will help accelerate their clinical adoption and broaden their biomedical applications.
2.Targeting PPARα for The Treatment of Cardiovascular Diseases
Tong-Tong ZHANG ; Hao-Zhuo ZHANG ; Li HE ; Jia-Wei LIU ; Jia-Zhen WU ; Wen-Hua SU ; Ju-Hua DAN
Progress in Biochemistry and Biophysics 2025;52(9):2295-2313
Cardiovascular disease (CVD) remains one of the leading causes of mortality among adults globally, with continuously rising morbidity and mortality rates. Metabolic disorders are closely linked to various cardiovascular diseases and play a critical role in their pathogenesis and progression, involving multifaceted mechanisms such as altered substrate utilization, mitochondrial structural and functional dysfunction, and impaired ATP synthesis and transport. In recent years, the potential role of peroxisome proliferator-activated receptors (PPARs) in cardiovascular diseases has garnered significant attention, particularly peroxisome proliferator-activated receptor alpha (PPARα), which is recognized as a highly promising therapeutic target for CVD. PPARα regulates cardiovascular physiological and pathological processes through fatty acid metabolism. As a ligand-activated receptor within the nuclear hormone receptor family, PPARα is highly expressed in multiple organs, including skeletal muscle, liver, intestine, kidney, and heart, where it governs the metabolism of diverse substrates. Functioning as a key transcription factor in maintaining metabolic homeostasis and catalyzing or regulating biochemical reactions, PPARα exerts its cardioprotective effects through multiple pathways: modulating lipid metabolism, participating in cardiac energy metabolism, enhancing insulin sensitivity, suppressing inflammatory responses, improving vascular endothelial function, and inhibiting smooth muscle cell proliferation and migration. These mechanisms collectively reduce the risk of cardiovascular disease development. Thus, PPARα plays a pivotal role in various pathological processes via mechanisms such as lipid metabolism regulation, anti-inflammatory actions, and anti-apoptotic effects. PPARα is activated by binding to natural or synthetic lipophilic ligands, including endogenous fatty acids and their derivatives (e.g., linoleic acid, oleic acid, and arachidonic acid) as well as synthetic peroxisome proliferators. Upon ligand binding, PPARα activates the nuclear receptor retinoid X receptor (RXR), forming a PPARα-RXR heterodimer. This heterodimer, in conjunction with coactivators, undergoes further activation and subsequently binds to peroxisome proliferator response elements (PPREs), thereby regulating the transcription of target genes critical for lipid and glucose homeostasis. Key genes include fatty acid translocase (FAT/CD36), diacylglycerol acyltransferase (DGAT), carnitine palmitoyltransferase I (CPT1), and glucose transporter (GLUT), which are primarily involved in fatty acid uptake, storage, oxidation, and glucose utilization processes. Advancing research on PPARα as a therapeutic target for cardiovascular diseases has underscored its growing clinical significance. Currently, PPARα activators/agonists, such as fibrates (e.g., fenofibrate and bezafibrate) and thiazolidinediones, have been extensively studied in clinical trials for CVD prevention. Traditional PPARα agonists, including fenofibrate and bezafibrate, are widely used in clinical practice to treat hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. These fibrates enhance fatty acid metabolism in the liver and skeletal muscle by activating PPARα, and their cardioprotective effects have been validated in numerous clinical studies. Recent research highlights that fibrates improve insulin resistance, regulate lipid metabolism, correct energy metabolism imbalances, and inhibit the proliferation and migration of vascular smooth muscle and endothelial cells, thereby ameliorating pathological remodeling of the cardiovascular system and reducing blood pressure. Given the substantial attention to PPARα-targeted interventions in both basic research and clinical applications, activating PPARα may serve as a key therapeutic strategy for managing cardiovascular conditions such as myocardial hypertrophy, atherosclerosis, ischemic cardiomyopathy, myocardial infarction, diabetic cardiomyopathy, and heart failure. This review comprehensively examines the regulatory roles of PPARα in cardiovascular diseases and evaluates its clinical application value, aiming to provide a theoretical foundation for further development and utilization of PPARα-related therapies in CVD treatment.
3. Preparation of tripterygium glycoside nanoparticles and therapeutic effect on arthritis rats
Zhi-Rong WANG ; Man LI ; Zhen-Qiang ZHANG ; Min YAN ; Xiang-Xiang WU ; Hua-Hui ZENG
Chinese Pharmacological Bulletin 2024;40(1):125-132
Aim To prepare tripterygium glycoside nanoparticles and probe into their therapeutic effect on collagen-induced arthritis ( CIA) rats. Methods Tripterygium glycosides polyglycoside nanoparticles were prepared by thin film dispersion method and their quality was assessed. The CIA model was established and drug intervention performed. The body weight, toe swelling degree and arthritis index were measured. The pathological changes of the organs, knee and ankle synovium were observed. The serum levels of kidney function and inflammatory cytokine expression were detected in rats. Results The prepared tripterygium wil-fordii polyglycoside nanoparticles were round particles with uniform distribution and stable properties under electron microscope. Compared with the model group, the swelling of the left and right toes of medication group significantly decreased (P < 0. 01), and the ar-thritis index markedly decreased ( P < 0. 01). Among them, the efficacy of the TG-NPs group was better than that of the TG group. Compared with the normal group, the indexes of heart, spleen, kidney and testis all significantly decreased (P <0. 05, P<0.01). TG-NPs group had a significantly reduced pathological ankle-joint injury in knee cartilage and increased apoptotic synovial cells. Compared with the model group, the serum levels of ALT and BUN and CRE in TG-NPs group were significantly lower (P < 0. 05 ), and IL-1β, TNF-α and IL-6 levels decreased significantly (P <0. 05). Conclusions TG-NPs have good therapeutic effect on CIA through induction of synovial cell apoptosis and decrease of the expression of inflammatory cytokines. By intravenous injection of blood circula-tion, slow and controlled release of drugs can be achieved, the first pass effect caused by oral drug can be avoided, the viscera toxicity can be reduced, which provides an experimental basis for the development of new nanoagents for the treatment of rheumatoid arthritis.
4.Analysis of phenotype formation mechanism of a new variety of Lonicera japonica Flos "Huajin 6" at long bud stage
Run-zhu LI ; Cong-lian LIANG ; Zhen-hua LIU ; Jia LI ; Yong-qing ZHANG ; Hai-yan LIU ; Gao-bin PU
Acta Pharmaceutica Sinica 2024;59(2):476-481
Based on the long bud stage phenotype of a new
5.A network Meta analysis of the effects of different exercise modalities on inhibitory control in children with attention deficit hyperactivity disorder
LI Hua, ZHANG Ping, ZHEN Zhiping
Chinese Journal of School Health 2024;45(4):497-502
Objective:
To compare the relative effectiveness of different exercise modalities on inhibitory control in children with attention deficit hyperactivity disorder (ADHD), so as to provide an evidence based basis for the development of effective exercise prescriptions.
Methods:
The databases of China National Knowledge Internet (CNKI), Pubmed, Web of Science, Embase, and Cochrane were searched to screen the literature of randomized controlled trials of exercise interventions for inhibitory control in children with ADHD up to December 31, 2022. The Cochrane risk of bias assessment tool was used for methodological quality assessment, and Stata 17.0 software was used for network Meta analysis, standardized mean difference ( SMD ) and 95% CI were used as the effect indicators to compare the difference in effect between interventions and rank the effect.
Results:
Twenty two papers with a total of 1 134 participants aged 6-14.5 years were finally included. Network Meta analysis showed that the impact effects of physical and mental exercises [ SMD (95% CI )=1.08(0.50-1.66)], cognition+exercise [ SMD (95% CI ) =0.81(0.13-1.48)], and ball games [ SMD (95% CI )= 1.54(0.99-2.09)] were significantly superior to that of control group, and the ball games had a significantly better effect than single aerobic exercise [ SMD (95% CI )=1.02(0.20-1.84)], and combined exercises [ SMD (95% CI )=1.08( 0.28 -1.88)]( P < 0.05 ). The results of surface under the cumulative ranking (SUCRA) showed that ball games might be the best means to improve inhibitory control in children with ADHD(SUCRA=95.3).
Conclusion
It is recommended to appropriately increase ball sports in sports activities to more effectively improve the inhibitory control of children with ADHD.
6.Effects of Aβ receptor PirB on mouse astrocyte proliferation and reactive astrogliosis
Yuan-Jie ZHAO ; Zhen-Jie TUO ; Pei-Jun SHANG ; Jin-Wen YANG ; Xiao-Hua ZHANG
Medical Journal of Chinese People's Liberation Army 2024;49(1):82-90
Objective To observe the effects of amyloid-β(Aβ)receptor PirB on mouse astrocyte proliferation and reactive astrogliosis in vitro.Methods Mouse primary astrocytes were cultured,and divided into control group,Aβ group,Aβ+0.2 μmol/L PEP group,Aβ+0.4 μmol/L PEP group,Aβ+Fluspirilene group,Aβ+GFP-LV group,and Aβ+mPirB-LV group.The mouse astrocytes were treated with soluble PirB extracellular peptide PEP or PirB inhibitor Fluspirilene,respectively,to inhibit endogenous PirB receptor,or overexpressed PirB gene via lentivirus transfection and then treated with Aβ1-42 oligomers.The proliferation of astrocytes was observed by RTCA and EdU methods,and the mRNA expression levels of S-100 calcium-binding protein B(S-100β),Vimentin,Nestin and amyloid precursor protein(APP)associated with reactive astrogliosis of astrocytes were observed by real-time PCR,and the expression level of glial fibrillary acid protein(GFAP)was detected by Western-blotting.Results The results of RTCA monitoring showed that normalized cell index(NCI)values of each group decreased sharply after treatment,and then increased gradually and tended to be stable.The results of EdU staining showed that the proliferative activity of astrocytes was significantly enhanced in the Aβ group(P<0.05)compared with control group;Compared with Aβ group,cell proliferation activity in Aβ + 0.2 μmol/L PEP group,Aβ+0.4 μmol/L PEP group and Aβ+Fluspirilene group were significantly decreased(P<0.01 or P<0.001).The results of real-time PCR showed that compared with control group,mRNA expressions of GFAP,S-100β,Vimentin,Nestin,APP and PirB in Aβ group were significantly increased(P<0.05);Compared with Aβ group,mRNA expressions of GFAP,S-100β,Vimentin,Nestin,APP and PirB in Aβ+0.4 μmol/L PEP group were significantly decreased(P<0.01);Compared with Aβ+GFP-LV group,mRNA expressions of GFAP,S-100β,Vimentin,Nestin,APP and PirB in Aβ +mPirB-LV group were significantly increased(P<0.05).The results of Western blotting showed that compared with control group,the expression of GFAP in Aβ group was significantly increased(P<0.05);Compared with Aβ group,the expression of GFAP in Aβ+0.4 μmol/L PEP group was significantly decreased(P<0.05).Conclusions PirB is an upstream molecule which could regulate astrocyte proliferation and reactive astrogliosis,and inhibiting PirB receptor in astrocytes may be a potential treatment for Alzheimer's disease.
7.Role and Mechanism of Polyunsaturated Fatty Acids on Potassium Ion Channels
Yu-Jiao SUN ; Chao CHANG ; Zhen-Hua WU ; Yi-Fei ZHANG ; Yu-Tao TIAN
Progress in Biochemistry and Biophysics 2024;51(1):5-19
Polyunsaturated fatty acids (PUFAs) have diverse health-promoting effects, such as potentially protecting in immune, nervous, and cardiovascular systems by targeting a variety of sites, including most ion channels. Voltage-gated potassium channels of the KV7 family and large-conductance Ca2+- and voltage-activated K+ (BKCa) channels are expressed in many tissues, therefore, their physiological importance is evident from the various disorders linked to dysfunctional KV7 channels and BKCa channels. Thus, it is extremely important to learn how potassium channels are regulated by PUFAs. The aim of this review is to provide an overview of the effects of PUFAs on KV7 channels and BKCa channels functions, as well as the mechanisms underlying these effects. In summarizing reported effects of PUFAs on KV7 and BKCa channels mediated currents, we generally conclude that PUFAs increase the current amplitude, meanwhile, differential molecular and biophysical mechanisms are associated with the current increase. In KV7 channels the currents increasement are associated with a shift in the voltage dependence of channel opening and increased maximum conductance in KV7 channels, while in BKCa channels, they are associated with destabilization the pore domain closed conformation. Furthermore, PUFA effects are influenced by auxiliary subunits of KV7 and BKCa channels, associate with channels in certain tissues. although findings are conflicting. A better understanding of how PUFAs regulate KV7 and BKCa channels may offer insight into their physiological regulation and may lead to new therapeutic strategies and approaches.
8.Progress of the application of peripheral nerve blocks for older hip fractures in older adults
Jinyu WU ; Hongye ZHANG ; Zhen HUA
Chinese Journal of Geriatrics 2024;43(2):251-256
Older patients with hip fractures often experience moderate to severe pain, which can increase the risk of complications during surgery and hinder early postoperative mobility and rehabilitation.To address this, peripheral nerve blocks have been suggested as a method for perioperative pain management in these patients.This article aims to provide an overview of the neural innervation of the hip joint, the techniques used for peripheral nerve blocks in hip fracture surgeries, and their impact on postoperative complications and recovery in older patients.Current evidence suggests that peripheral nerve blocks may have a positive effect on the prognosis of older patients with hip fractures.However, further high-quality clinical studies are required to validate these findings.
9.Development and Therapeutic Applications of Precise Gene Editing Technology
Yi-Meng ZHANG ; Xiao YANG ; Jian WANG ; Zhen-Hua LI
Progress in Biochemistry and Biophysics 2024;51(10):2637-2647
The advent of gene editing represents one of the most transformative breakthroughs in life science, making genome manipulation more accessible than ever before. While traditional CRISPR/Cas-based gene editing, which involves double-strand DNA breaks (DSBs), excels at gene disruption, it is less effective for accurate gene modification. The limitation arises because DSBs are primarily repaired via non-homologous end joining (NHEJ), which tends to introduce indels at the break site. While homology-directed repair (HDR) can achieve precise editing when a donor DNA template is provided, the reliance on DSBs often results in unintended genome damage. HDR is restricted to specific cell cycle phases, limiting its application. Currently, gene editing has evolved to unprecedented levels of precision without relying on DSB and HDR. The development of innovative systems, such as base editing, prime editing, and CRISPR-associated transposases (CASTs), now allow for precise editing ranging from single nucleotides to large DNA fragments. Base editors (BEs) enable the direct conversion of one nucleotide to another, and prime editors (PEs) further expand gene editing capabilities by allowing for the insertion, deletion, or alteration of small DNA fragments. The CAST system, a recent innovation, allows for the precise insertion of large DNA fragments at specific genomic locations. In recent years, the optimization of these precise gene editing tools has led to significant improvements in editing efficiency, specificity, and versatility, with advancements such as the creation of base editors for nucleotide transversions, enhanced prime editing systems for more efficient and precise modifications, and refined CAST systems for targeted large DNA insertions, expanding the range of applications for these tools. Concurrently, these advances are complemented by significant improvements in in vivo delivery methods, which have paved the way for therapeutic application of precise gene editing tools. Effective delivery systems are critical for the success of gene therapies, and recent developments in both viral and non-viral vectors have improved the efficiency and safety of gene editing. For instance, adeno-associated viruses (AAVs) are widely used due to their high transfection efficiency and low immunogenicity, though challenges such as limited cargo capacity and potential for immune responses remain. Non-viral delivery systems, including lipid nanoparticles (LNPs), offer an alternative with lower immunogenicity and higher payload capacity, although their transfection efficiency can be lower. The therapeutic potential of these precise gene editing technologies is vast, particularly in treating genetic disorders. Preclinical studies have demonstrated the effectiveness of base editing in correcting genetic mutations responsible for diseases such as cardiomyopathy, liver disease, and hereditary hearing loss. These technologies promise to treat symptoms and potentially cure the underlying genetic causes of these conditions. Meanwhile, challenges remain, such as optimizing the safety and specificity of gene editing tools, improving delivery systems, and overcoming off-target effects, all of which are critical for their successful application in clinical settings. In summary, the continuous evolution of precise gene editing technologies, combined with advancements in delivery systems, is driving the field toward new therapeutic applications that can potentially transform the treatment of genetic disorders by targeting their root causes.
10.Full-length transcriptome sequencing and bioinformatics analysis of Polygonatum kingianum
Qi MI ; Yan-li ZHAO ; Ping XU ; Meng-wen YU ; Xuan ZHANG ; Zhen-hua TU ; Chun-hua LI ; Guo-wei ZHENG ; Jia CHEN
Acta Pharmaceutica Sinica 2024;59(6):1864-1872
The purpose of this study was to enrich the genomic information and provide a basis for further development and utilization of


Result Analysis
Print
Save
E-mail