1.Modified Ditan Tang Regulates Biorhythm-related Genes in Rat Model of Non-alcoholic Fatty Liver Disease
Zhiwen PANG ; Yu LIU ; Nan SONG ; Jie WANG ; Jingxuan ZHU ; Zhen HUA ; Yupeng PEI ; Qun WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):115-124
ObjectiveTo investigate the effects of modified Ditan tang on genes related to the transcription-translation feedback loop (TTFL) of biorhythm in the rat model of non-alcoholic fatty liver disease (NAFLD) and its mechanism for prevention and treatment of NAFLD. MethodsSixty-five healthy SPF male SD rats were randomly assigned into blank (n=20), model (n=15), and low-, medium-, and high-dose (2.68, 5.36, and 10.72 g·kg-1·d-1, respectively) modified Ditan tang (n=10) groups. Other groups except the blank group were fed a high-fat diet for 12 weeks. The modified Ditan tang groups were treated with the decoction at corresponding doses by gavage, and the blank and model groups were treated with an equal volume of normal saline from the 9th week for 4 weeks. The levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in the serum were measured by an automatic biochemical analyzer. TG and non-esterified fatty acid (NEFA) assay kits were used to measure the levels of TG and NEFA in the liver. The pathological changes in the hypothalamus and liver were observed by hematoxylin-eosin staining, and the lipid deposition in the liver was observed by oil red O staining. The levels of brain-muscle ARNT-like protein 1 (BMAL1/ARNTL) in the hypothalamus and liver were determined by immunohistochemical staining. The mRNA and protein levels of BMAL1, circadian locomotor output cycles kaput (CLOCK), period circadian clock 2 (PER2), and cryptochrome1 (Cry1) in the hypothalamus and liver were determined by Real-time PCR and Western blot, respectively. ResultsCompared with the blank group, the model group showed elevated levels of TG, TC, LDL-C, AST, and ALT (P<0.01) and a lowered level of HDL-C (P<0.05) in the serum, elevated levels of TG and NEFA in the liver (P<0.01), pyknosis and deep staining of hypothalamic neuron cells, and a large number of vacuoles in the brain area. In addition, the model group showed lipid deposition in the liver, up-regulated mRNA and protein levels of CLOCK and BMAL1 (P<0.01), and down-regulated mRNA and protein levels of Cry1 and PER2 (P<0.01) in the hypothalamus and liver. Compared with the model group, all the three modified Ditan tang groups showed lowered levels of TG, TC, LDL-C, ALT, and AST (P<0.05, P<0.01) and an elevated level of HDL-C (P<0.05) in the serum, and lowered levels of TG and NEFA (P<0.05, P<0.01) in the liver. Furthermore, the three groups showed alleviated pyknosis and deep staining of hypothalamic neuron cells, reduced lipid deposition in the liver, down-regulated mRNA and protein levels of CLOCK and BMAL1 (P<0.05, P<0.01), and up-regulated mRNA and protein levels of Cry1 and PER2 (P<0.05, P<0.01) in the hypothalamus and liver. ConclusionModified Ditan tang can reduce lipid deposition in the liver and regulate the expression of CLOCK, BMAL1, Cry1, and PER2 in the TTFL of NAFLD rats.
2.Mitochondial-located miRNAs in The Regulation of mtDNA Expression
Peng-Xiao WANG ; Le-Rong CHEN ; Zhen WANG ; Jian-Gang LONG ; Yun-Hua PENG
Progress in Biochemistry and Biophysics 2025;52(7):1649-1660
Mitochondria, functioning not only as the central hub of cellular energy metabolism but also as semi-autonomous organelles, orchestrate cellular fate decisions through their endogenous mitochondrial DNA (mtDNA), which encodes core components of the electron transport chain. Emerging research has identified microRNAs localized within mitochondria, termed mitochondria-located microRNAs (mitomiRs). Recent studies have revealed that mitomiRs are transcribed from nuclear DNA (nDNA), processed and matured in the cytoplasm, and subsequently transported into mitochondria. mitomiRs regulate mtDNA through diverse mechanisms, including modulation of mtDNA expression at the translational level and direct binding to mtDNA to influence transcription. Aberrant expression of mitomiRs leads to mitochondrial dysfunction and contributes to the pathogenesis of metabolic diseases. Restoring mitomiR expression to physiological levels using mitomiRs mimics or inhibitors has been shown to improve mitochondrial function and alleviate related diseases. Consequently, the regulatory mechanisms of mitomiRs have become a major focus in mitochondrial research. Given that mitomiRs are located in mitochondria, targeted delivery strategies designed for mtDNA can be adapted for the delivery of mitomiRs mimics or inhibitors. However, numerous intracellular and extracellular barriers remain, highlighting the need for more precise and efficient delivery systems in the future. The regulation of mtDNA expression mediated by mitomiRs not only expands our understanding of miRNA functions in post-transcriptional gene regulation but also provides promising molecular targets for the treatment of mitochondrial-related diseases. This review systematically summarizes recent research progress on mitomiRs in regulating mtDNA expression and discusses the underlying mechanisms of mitomiRs-mtDNA interactions. Additionally, it provides new perspectives on precision therapeutic strategies, with a particular emphasis on mitomiRs-based regulation of mitochondrial function in mitochondrial-related diseases.
3.The Near-infrared II Emission of Gold Clusters and Their Applications in Biomedicine
Zhen-Hua LI ; Hui-Zhen MA ; Hao WANG ; Chang-Long LIU ; Xiao-Dong ZHANG
Progress in Biochemistry and Biophysics 2025;52(8):2068-2086
Optical imaging is highly valued for its superior temporal and spatial resolution. This is particularly important in near-infrared II (NIR-II, 1 000-3 000 nm) imaging, which offers advantages such as reduced tissue absorption, minimal scattering, and low autofluorescence. These characteristics make NIR-II imaging especially suitable for deep tissue visualization, where high contrast and minimal background interference are critical for accurate diagnosis and monitoring. Currently, inorganic fluorescent probes—such as carbon nanotubes, rare earth nanoparticles, and quantum dots—offer high brightness and stability. However, they are hindered by ambiguous structures, larger sizes, and potential accumulation toxicity in vivo. In contrast, organic fluorescent probes, including small molecules and polymers, demonstrate higher biocompatibility but are limited by shorter emission wavelengths, lower quantum yields, and reduced stability. Recently, gold clusters have emerged as a promising class of nanomaterials with potential applications in biocatalysis, fluorescence sensing, biological imaging, and more. Water-soluble gold clusters are particularly attractive as fluorescent probes due to their remarkable optical properties, including strong photoluminescence, large Stokes shifts, and excellent photostability. Furthermore, their outstanding biocompatibility—attributed to good aqueous stability, ultra-small hydrodynamic size, and high renal clearance efficiency—makes them especially suitable for biomedical applications. Gold clusters hold significant potential for NIR-II fluorescence imaging. Atomic-precision gold clusters, typically composed of tens to hundreds of gold atoms and measuring only a few nanometers in diameter, possess well-defined three-dimensional structures and clear spatial coordination. This atomic-level precision enables fine-tuned structural regulation, further enhancing their fluorescence properties. Variations in cluster size, surface ligands, and alloying elements can result in distinct physicochemical characteristics. The incorporation of different atoms can modulate the atomic and electronic structures of gold clusters, while diverse ligands can influence surface polarity and steric hindrance. As such, strategies like alloying and ligand engineering are effective in enhancing both fluorescence and catalytic performance, thereby meeting a broader range of clinical needs. In recent years, gold clusters have attracted growing attention in the biomedical field. Their application in NIR-II imaging has led to significant progress in vascular, organ, and tumor imaging. The resulting high-resolution, high signal-to-noise imaging provides powerful tools for clinical diagnostics. Moreover, biologically active gold clusters can aid in drug delivery and disease diagnosis and treatment, offering new opportunities for clinical therapeutics. Despite the notable achievements in fundamental research and clinical translation, further studies are required to address challenges related to the standardized synthesis and complex metabolic behavior of gold clusters. Resolving these issues will help accelerate their clinical adoption and broaden their biomedical applications.
4.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
5. Preparation of tripterygium glycoside nanoparticles and therapeutic effect on arthritis rats
Zhi-Rong WANG ; Man LI ; Zhen-Qiang ZHANG ; Min YAN ; Xiang-Xiang WU ; Hua-Hui ZENG
Chinese Pharmacological Bulletin 2024;40(1):125-132
Aim To prepare tripterygium glycoside nanoparticles and probe into their therapeutic effect on collagen-induced arthritis ( CIA) rats. Methods Tripterygium glycosides polyglycoside nanoparticles were prepared by thin film dispersion method and their quality was assessed. The CIA model was established and drug intervention performed. The body weight, toe swelling degree and arthritis index were measured. The pathological changes of the organs, knee and ankle synovium were observed. The serum levels of kidney function and inflammatory cytokine expression were detected in rats. Results The prepared tripterygium wil-fordii polyglycoside nanoparticles were round particles with uniform distribution and stable properties under electron microscope. Compared with the model group, the swelling of the left and right toes of medication group significantly decreased (P < 0. 01), and the ar-thritis index markedly decreased ( P < 0. 01). Among them, the efficacy of the TG-NPs group was better than that of the TG group. Compared with the normal group, the indexes of heart, spleen, kidney and testis all significantly decreased (P <0. 05, P<0.01). TG-NPs group had a significantly reduced pathological ankle-joint injury in knee cartilage and increased apoptotic synovial cells. Compared with the model group, the serum levels of ALT and BUN and CRE in TG-NPs group were significantly lower (P < 0. 05 ), and IL-1β, TNF-α and IL-6 levels decreased significantly (P <0. 05). Conclusions TG-NPs have good therapeutic effect on CIA through induction of synovial cell apoptosis and decrease of the expression of inflammatory cytokines. By intravenous injection of blood circula-tion, slow and controlled release of drugs can be achieved, the first pass effect caused by oral drug can be avoided, the viscera toxicity can be reduced, which provides an experimental basis for the development of new nanoagents for the treatment of rheumatoid arthritis.
6.Epithelial transformation sequence 2 affecting the in vitro metastatic activity of esophageal squamous carcinoma cells by regulating the expression of p33 inhibitor growth-1
Yang WANG ; Zhen-Hua WU ; Hong-Bo LÜ ; Dong-Bo LUO
Acta Anatomica Sinica 2024;55(2):203-209
Objective To investigate the effects of epithelial transformation sequence 2(ECT2)and p33ING1 on the metastatic activity of esophageal squamous cell carcinoma(ESCC)cells.Methods The expressions of ECT2 and p33ING1 in esophageal squamous cell carcinoma tissues and adjacent tissues were detected by immunohistochemistry and Western blotting.Human esophageal squamous carcinoma cell line KYSE140 cells were divided into 4 groups:blank group,negative control(pcDNA 3.1 NC)group,overexpression group(pcDNA 3.1 ECT2)and inhibited expression group(si ECT2).MTT assay and cell colony formation assay were used to study the proliferation and growth ability of cells,Transwell assay and scratch assay used to study the invasion and migration ability of cells,and flow cytometry used to detect apoptosis and cell cycle,Western blotting used to detect the effect of ECT2 on p33ING1 protein.Results ECT2 expression increased and p33ING1 expression decreased in esophageal squamous cell carcinoma tissues.Overexpression of ECT2 significantly increased the growth,colony formation,migration and invasion abilities of KYSE140 cells,and decreased the apoptosis rate and p33ING1 expression of KYSE140 cells.In addition,inhibition of ECT2 expression could reverse the above changes.Conclusion The high expression of ECT2 can promote the growth and metastasis of esophageal squamous cell carcinoma KYSE140 cells and inhibit their apoptosis.The mechanism may be related to the inhibition of p33ING1 expression by ECT2.
7.The relationship between ulcerative colitis and the risk of hypothyroidism:A two-mendelian randomization study
Yin HUA ; Xiaoyan WANG ; Zhen WANG ; Yongning XIN ; Shousheng LIU
The Journal of Practical Medicine 2024;40(6):827-832
Objective To investigate assess the bidirectional causal relationship between ulcerative colitis(UC)and hypothyroidism using a two-sample Mendelian randomization(TSMR).Methods Single nucleotide polymorphism(SNP)data relevant to UC and hypothyroidism were retrieved from the Finnish Biobank and the IEU database,respectively.Independent SNPs strongly associated with UC were selected as instrumental variables.Causal associations between UC and hypothyroidism were evaluated using the inverse variance weighted(IVW)method,MR-Egger regression,and weighted median estimator.Additionally,MR-PRESSO was employed to assess the hori-zontal pleiotropy and outlier SNPs.Cochran's Q test and funnel plots were performed to evaluate the heterogeneity among the SNPs.A leave-one-out analysis was conducted to examine the influence of individual SNPs on causal assessments.Results Four instrumental variables strongly associated with UC were identified.The IVW method indicated a causal relationship between UC and hypothyroidism(OR = 0.975,95%CI:0.924~0.990,P = 0.011).Cochran's Q test yielded a Q statistic of 2.566 with a p-value of 0.463,suggesting no heterogeneity among the SNPs.Both MR-Egger(P = 0.523)and MR-PRESSO(P = 0.548)tests suggested the absence of horizontal pleiotropy.However,the results of the reverse TSMR did not support a reverse causal relationship.Conclusion The findings from the TSMR analysis reveal a negative causal relationship between UC and hypothyroidism.
8.Catheter-associated infection and influencing factors in anti-tumor chemo-therapy treated patients after indwelling peripherally inserted central ca-theter:analysis based on random forest model
Ju-Zhen ZHOU ; Li-Hua WANG ; Qiu-Ping CHEN ; Yang JU
Chinese Journal of Infection Control 2024;23(2):201-207
Objective To analyze the influencing factors for catheter-associated infection(CAI)in chemotherapy treated patients after indwelling peripherally inserted central catheter(PICC)based on a random forest model.Methods 400 tumor patients who received chemotherapy and PICC were selected and divided into the training set(n=300)and the test set(n=100)in a 3∶1 ratio through computer-generated random number.Patients in the training set were subdivided into the non-infection group and the infection group based on the occurrence of infec-tion.Clinical data from two groups of patients were compared.Influencing factors for the occurrence of CAI after PICC were analyzed with multivariate logistic regression model and the integrated classification algorithm of random forest model,and the predictive performance of the two methods was compared.Results Among 300 chemotherapy treated patients in the training set,32 cases(10.67%)experienced CAI.Compared with the non-infection group,patients in the infection group had more single punctures for catheterization,longer PICC retention time,larger pro-portion of catheter movement,larger proportion of complication with diabetes,higher frequency of dressing chan-ges,lower white blood cell count and immune function(all P<0.05).PICC retention time,catheter movement,complication with diabetes,dressing change frequency,white blood cell(WBC)and immune function were inde-pendent influencing factors for CAI after PICC(all P<0.05).The random forest model showed that ranking by the importance of different influencing factors was as following:PICC retention time,catheter movement,complication with diabetes,WBC,dressing change frequency and immune function.The integrated classification algorithm of random forest model for predicting the occurrence of CAI in chemotherapy treated patients showed that the area un-der the receiver operating characteristic(ROC)curve(AUC)was 0.872,which had better prediction performance compared with the logistic regression model(AUC=0.791).Conclusion PICC retention time,catheter movement,complicated with diabetes,dressing change frequency,WBC level and immune function are independent influencing factors for CAI in chemotherapy treated patients.The integrated classification algorithm of random forest model can be used to predict CAI in chemotherapy treated patients,and its prediction performance is better than that of the logistic regression model.
9.Behavior of cartilage-derived microtissue and ability of cartilage formation in three-dimensional dynamic and static culture conditions
Wei LIU ; Hongyu JIANG ; Jiajie CHEN ; Yuyang GAO ; Yanjun GUAN ; Zhibo JIA ; Ying JIAO ; Zhen HUA ; Gehan JIANG ; Ying HE ; Aiyuan WANG ; Jiang PENG ; Jianhong QI
Chinese Journal of Tissue Engineering Research 2024;28(25):4022-4026
BACKGROUND:Compared with traditional two-dimensional culture,three-dimensional microtissue culture can show greater advantages.However,more favorable cultivation methods in three-dimensional culture still need to be further explored. OBJECTIVE:To evaluate the cell behavior of microtissue and its ability to promote cartilage formation under two three-dimensional culture methods. METHODS:Cartilage-derived microcarriers were prepared by chemical decellularization and tissue crushing.DNA quantification and nuclear staining were used to verify the success of decellularization,and histological staining was used to observe the matrix retention before and after decellularization.The microcarriers were characterized by scanning electron microscopy and CCK-8 assay.Cartilage-derived microtissues were constructed by combining cartilage-derived microcarriers with human adipose mesenchymal stem cells through three-dimensional static culture and three-dimensional dynamic culture methods.The cell viability and chondrogenic ability of the two groups of microtissues were detected by scanning electron microscopy,live and dead staining,and RT-qPCR. RESULTS AND CONCLUSION:(1)Cartilage-derived microcarriers were successfully prepared.Compared with before decellularization,the DNA content significantly decreased after decellularization(P<0.001).Scanning electron microscope observation showed that the surface of the microcarrier was surrounded by collagen,maintaining the characteristics of the natural extracellular matrix of cartilage cells.CCK-8 assay indicated that microcarriers had no cytotoxicity and could promote cell proliferation.(2)Scanning electron microscopy and live and dead staining results showed that compared with the three-dimensional static group,the three-dimensional dynamic group had a more extended morphology of microtissue cells,and extensive connections between cells and cells,between cells and matrix,and between matrix.(3)The results of RT-qPCR showed that the expressions of SOX9,proteoglycan,and type Ⅱ collagen in microtissues of both groups were increased at 7 or 14 days.The relative expression levels of each gene in the three-dimensional dynamic group were significantly higher than those in the three-dimensional static group at 14 days(P<0.05).At 21 days,the three-dimensional static group had significantly higher gene expression compared with the three-diomensional dynamic group(P<0.001).(4)The results showed that compared with three-dimensional static culture microtissue,three-dimensional dynamic culture microtissue could achieve higher expression of chondrogen-related genes in a shorter time,showing better cell viability and chondrogenic ability.
10.Development and Therapeutic Applications of Precise Gene Editing Technology
Yi-Meng ZHANG ; Xiao YANG ; Jian WANG ; Zhen-Hua LI
Progress in Biochemistry and Biophysics 2024;51(10):2637-2647
The advent of gene editing represents one of the most transformative breakthroughs in life science, making genome manipulation more accessible than ever before. While traditional CRISPR/Cas-based gene editing, which involves double-strand DNA breaks (DSBs), excels at gene disruption, it is less effective for accurate gene modification. The limitation arises because DSBs are primarily repaired via non-homologous end joining (NHEJ), which tends to introduce indels at the break site. While homology-directed repair (HDR) can achieve precise editing when a donor DNA template is provided, the reliance on DSBs often results in unintended genome damage. HDR is restricted to specific cell cycle phases, limiting its application. Currently, gene editing has evolved to unprecedented levels of precision without relying on DSB and HDR. The development of innovative systems, such as base editing, prime editing, and CRISPR-associated transposases (CASTs), now allow for precise editing ranging from single nucleotides to large DNA fragments. Base editors (BEs) enable the direct conversion of one nucleotide to another, and prime editors (PEs) further expand gene editing capabilities by allowing for the insertion, deletion, or alteration of small DNA fragments. The CAST system, a recent innovation, allows for the precise insertion of large DNA fragments at specific genomic locations. In recent years, the optimization of these precise gene editing tools has led to significant improvements in editing efficiency, specificity, and versatility, with advancements such as the creation of base editors for nucleotide transversions, enhanced prime editing systems for more efficient and precise modifications, and refined CAST systems for targeted large DNA insertions, expanding the range of applications for these tools. Concurrently, these advances are complemented by significant improvements in in vivo delivery methods, which have paved the way for therapeutic application of precise gene editing tools. Effective delivery systems are critical for the success of gene therapies, and recent developments in both viral and non-viral vectors have improved the efficiency and safety of gene editing. For instance, adeno-associated viruses (AAVs) are widely used due to their high transfection efficiency and low immunogenicity, though challenges such as limited cargo capacity and potential for immune responses remain. Non-viral delivery systems, including lipid nanoparticles (LNPs), offer an alternative with lower immunogenicity and higher payload capacity, although their transfection efficiency can be lower. The therapeutic potential of these precise gene editing technologies is vast, particularly in treating genetic disorders. Preclinical studies have demonstrated the effectiveness of base editing in correcting genetic mutations responsible for diseases such as cardiomyopathy, liver disease, and hereditary hearing loss. These technologies promise to treat symptoms and potentially cure the underlying genetic causes of these conditions. Meanwhile, challenges remain, such as optimizing the safety and specificity of gene editing tools, improving delivery systems, and overcoming off-target effects, all of which are critical for their successful application in clinical settings. In summary, the continuous evolution of precise gene editing technologies, combined with advancements in delivery systems, is driving the field toward new therapeutic applications that can potentially transform the treatment of genetic disorders by targeting their root causes.

Result Analysis
Print
Save
E-mail