1.Effects of Electroacupuncture at "Fengchi" (GB 20), "Waiguan" (TE 5), and "Yanglingquan" (GB 34) on Nociceptive Sensitization and PKC/TRPV1 Pathway in the Trigeminal Ganglion of Chronic Migraine Model Rats
Yixiang ZENG ; Runze TU ; Shucong ZHAO ; Yang YANG ; Haojia WEN ; Zhuozhong HE ; Shengli ZHOU ; Lei TAN ; Ke HE ; Lei FU
Journal of Traditional Chinese Medicine 2025;66(3):283-289
ObjectiveTo explore the possible mechanisms of electroacupuncture at Fengchi (GB 20), Waiguan (TE 5), and Yanglingquan (GB 34) in treating chronic migraine from the perspective of nociceptive sensitization. MethodsForty SPF-grade SD rats were randomly divided into blank group, model group, electroacupuncture group, electroacupuncture + agonist group, and inhibitor group, with 8 rats in each group. Except for the blank group, rats were injected intraperitoneally with nitroglycerin to establish a chronic migraine rat model. After successful modeling, the electroacupuncture group received electroacupuncture at bilateral "Fengchi" (GB 20), "Waiguan" (TE 5), and "Yanglingquan" (GB 34) for 30 minutes each session. The electroacupuncture + agonist group received the same electroacupuncture treatment and additional injection of protein kinase C (PKC) agonist Phorbol 12-myristate 13-acetate (1.0 ng/μl, 25 μl) via the infraorbital foramen. The inhibitor group received PKC inhibitor Chelerythrine Chloride (1.0 ng/μl, 10 μl) via the infraorbital foramen. The blank group, model group, and inhibitor group underwent restraint for 30 minutes without other interventions. All groups were continuously intervened for 5 days. After the intervention, the nociceptive thresholds (mechanical and thermal pain) of the periorbital area and hind paw were measured. The expression levels of transient receptor potential vanillic acid subtype 1 (TRPV1), phosphorylated TRPV1 (p-TRPV1), PKC proteins, Trpv1, Pkc mRNA, and the average fluorescence intensity of transient receptor potential vanillic acid subtype 1 (TRPV1) and PKC in the trigeminal ganglion were detected using Western Blot, real-time fluorescence quantitative PCR, and immunofluorescence methods. ResultsCompared with the blank group, the mechanical and thermal pain thresholds of the periorbital area and hind paw were reduced in the model group, and the protein levels of TRPV1, PKC, p-TRPV1, as well as the mRNA expression of Trpv1 and Pkc, and the average fluorescence intensity of TRPV1 and PKC in the trigeminal ganglion significantly increased (P<0.05 or P<0.01). Compared with the model group, the electroacupuncture group exhibited increased mechanical and thermal pain thresholds in the periorbital and hind paw areas, and decreased protein levels of TRPV1, PKC, p-TRPV1, mRNA expression of Trpv1 and Pkc, and average fluorescence intensity of TRPV1. In the electroacupuncture + agonist group, the average fluorescence intensity of TRPV1 in the trigeminal ganglion decreased. The inhibitor group exhibited increased mechanical pain thresholds in the periorbital area and thermal pain thresholds in the hind paw, along with decreased protein levels of TRPV1, PKC, p-TRPV1, and the average fluorescence intensity of TRPV1 and PKC (P<0.05 or P<0.01). Compared with the electroacupuncture group, the electroacupuncture + agonist group showed an increase in the protein levels of TRPV1, PKC, p-TRPV1, and the mRNA expression of Trpv1 (P<0.05 or P<0.01). ConclusionElectroacupuncture at the "Fengchi" (GB 20), "Waiguan" (TE 5), and "Yanglingquan" (GB 34) acupoints can increase the mechanical and thermal pain thresholds in chronic migraine rats and alleviate nociceptive sensitization. The mechanism may be related to the inhibition of PKC/TRPV1 pathway.
2.Introduction and enlightenment of the Recommendations and Expert Consensus for Plasm a and Platelet Transfusion Practice in Critically ill Children: from the Transfusion and Anemia Expertise Initiative-Control/Avoidance of Bleeding (TAXI-CAB)
Lu LU ; Jiaohui ZENG ; Hao TANG ; Lan GU ; Junhua ZHANG ; Zhi LIN ; Dan WANG ; Mingyi ZHAO ; Minghua YANG ; Rong HUANG ; Rong GUI
Chinese Journal of Blood Transfusion 2025;38(4):585-594
To guide transfusion practice in critically ill children who often need plasma and platelet transfusions, the Transfusion and Anemia Expertise Initiative-Control/Avoidance of Bleeding (TAXI-CAB) developed Recommendations and Expert Consensus for Plasma and Platelet Transfusion Practice in Critically Ill Children. This guideline addresses 53 recommendations related to plasma and platelet transfusion in critically ill children with 8 kinds of diseases, laboratory testing, selection/treatment of plasma and platelet components, and research priorities. This paper introduces the specific methods and results of the recommendation formation of the guideline.
3.Study on mechanism of naringin in alleviating cerebral ischemia/reperfusion injury based on DRP1/LRRK2/MCU axis.
Kai-Mei TAN ; Hong-Yu ZENG ; Feng QIU ; Yun XIANG ; Zi-Yang ZHOU ; Da-Hua WU ; Chang LEI ; Hong-Qing ZHAO ; Yu-Hong WANG ; Xiu-Li ZHANG
China Journal of Chinese Materia Medica 2025;50(9):2484-2494
This study aims to investigate the molecular mechanism by which naringin alleviates cerebral ischemia/reperfusion(CI/R) injury through DRP1/LRRK2/MCU signaling axis. A total of 60 SD rats were randomly divided into the sham group, the model group, the sodium Danshensu group, and low-, medium-, and high-dose(50, 100, and 200 mg·kg~(-1)) naringin groups, with 10 rats in each group. Except for the sham group, a transient middle cerebral artery occlusion/reperfusion(tMCAO/R) model was established in SD rats using the suture method. Longa 5-point scale was used to assess neurological deficits. 2,3,5-Triphenyl tetrazolium chloride(TTC) staining was used to detect the volume percentage of cerebral infarction in rats. Hematoxylin-eosin(HE) staining and Nissl staining were employed to assess neuronal structural alterations and the number of Nissl bodies in cortex, respectively. Western blot was used to determine the protein expression levels of B-cell lymphoma-2 gene(Bcl-2), Bcl-2-associated X protein(Bax), cleaved cysteine-aspartate protease-3(cleaved caspase-3), mitochondrial calcium uniporter(MCU), microtubule-associated protein 1 light chain 3(LC3), and P62. Mitochondrial structure and autophagy in cortical neurons were observed by transmission electron microscopy. Immunofluorescence assay was used to quantify the fluorescence intensities of MCU and mitochondrial calcium ion, as well as the co-localization of dynamin-related protein 1(DRP1) with leucine-rich repeat kinase 2(LRRK2) and translocase of outer mitochondrial membrane 20(TOMM20) with LC3 in cortical mitochondria. The results showed that compared with the model group, naringin significantly decreased the volume percentage of cerebral infarction and neurological deficit score in tMCAO/R rats, alleviated the structural damage and Nissl body loss of cortical neurons in tMCAO/R rats, inhibited autophagosomes in cortical neurons, and increased the average diameter of cortical mitochondria. The Western blot results showed that compared to the sham group, the model group exhibited increased levels of cleaved caspase-3, Bax, MCU, and the LC3Ⅱ/LC3Ⅰ ratio in the cortex and reduced protein levels of Bcl-2 and P62. However, naringin down-regulated the protein expression of cleaved caspase-3, Bax, MCU and the ratio of LC3Ⅱ/LC3Ⅰ ratio and up-regulated the expression of Bcl-2 and P62 proteins in cortical area. In addition, immunofluorescence analysis showed that compared with the model group, naringin and positive drug treatments significantly decreased the fluorescence intensities of MCU and mitochondrial calcium ion. Meanwhile, the co-localization of DRP1 with LRRK2 and TOMM20 with LC3 in cortical mitochondria was also decreased significantly after the intervention. These findings suggest that naringin can alleviate cortical neuronal damage in tMCAO/R rats by inhibiting DRP1/LRRK2/MCU-mediated mitochondrial fragmentation and the resultant excessive mitophagy.
Animals
;
Rats, Sprague-Dawley
;
Reperfusion Injury/genetics*
;
Flavanones/administration & dosage*
;
Rats
;
Dynamins/genetics*
;
Male
;
Brain Ischemia/genetics*
;
Protein Serine-Threonine Kinases/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Drugs, Chinese Herbal/administration & dosage*
4.Exploring the Clinical Application of Sparrow-Pecking Needling Method Based on the Manipulation Technique
Jing LIU ; Weimei ZENG ; Chao YANG ; Guanqun WANG ; Jiping ZHAO
Journal of Traditional Chinese Medicine 2025;66(16):1731-1736
By systematically sorting out the theoretical origin, manipulation key points, and clinical applications of sparrow-pecking needling, it is believed that sparrow-pecking needling method involves performing small-amplitude, high-frequency lifting and thrusting of the needle tip in the original position, with heavy thrusting and light lifting, starting slowly and then becoming rapid, thus forming a characteristic needling sensation that spreads to the surroundings in a wavelike manner. The sparrow-pecking needling plays a role in stimulating the conduction of channel qi and regulating the circulation of qi and blood. Additionally, this paper summarized the clinical applications of sparrow-pecking needling in five aspects, regulating mind, regulating channel sinews, regulating zang-fu organs, regulating ying-wei (nutrient and defense qi), and regulating yang qi, so as to provide references for inheriting and expanding the theory and clinical application of sparrow-pecking needling.
5.Effect of tritiated water on the immune system of zebrafish and mechanism analysis
Xiaofang GENG ; Chang LIU ; Yinyin YANG ; Yang ZHANG ; Le ZHAO ; Bingqing ZENG ; Chen WANG ; Pengyu LIN ; Yulong LIU
Chinese Journal of Radiological Health 2025;34(3):354-362
Objective To investigate the effect of tritiated water on the immune system of zebrafish and its potential molecular mechanism. Methods Zebrafish embryos (2.5 to 3 hours post-fertilization [hpf]) were exposed to 3.7 × 104 Bq/mL tritiated water (tritiated water group), and those exposed to E3 culture medium were used as the control group. The mortality rate, hatching rate, deformity rate, heart rate, body length, yolk sac area, neutrophil count in the tail, immune-related gene expression, and immune-related protein expression of zebrafish in the two groups were determined. Then transcriptome technology was used to further analyze the possible mechanism of tritiated water affecting the immune system of zebrafish. Results Compared with the control group, zebrafish at 72 hpf in the tritiated water group had no significant changes in the mortality rate, hatching rate, deformity rate, body length, and yolk sac area((t = 0.9045, 0.5000, 1.0000, 0.7238, 0.0337, P = 0.4169, 0.6433, 0.3739, 0.4785, 0.9735), but had significantly increased heart rate(t = 4.575,P = 0.002). At 4 days post-fertilization (dpf), the neutrophil count in the tail of zebrafish in the tritiated water group was significantly increased(t = 2.563,P = 0.0196), the mRNA expression of TNF-α was significantly decreased(t = 2.891, P = 0.045), the protein expression of nuclear factor-kappa B (NF-κB) was significantly increased(t = 3.848, P = 0.018), and the protein expression of NLRP3 was significantly decreased(t = 14.98, P = 0.001). At 7 dpf, the neutrophil count in the tail and the protein expression levels of NF-κB, NLRP3, and interleukin-1β were significantly decreased(t = 3.772, 7.048, 15.620, 4.423, P = 0.014, 0.002, 0.0001, 0.012). Transcriptome sequencing revealed that differentially expressed genes were mainly enriched in the “neutrophil activation” and “platelet activation pathways” at 4 dpf and in the “neutrophil apoptosis”, “ferroptosis”, and “necroptosis” pathways at 7 dpf. Conclusion Tritiated water exposure induces a temporally dynamic immune response in zebrafish, potentially affecting immune homeostasis by regulating neutrophil activation and apoptosis, as well as the expression of NF-κB and NLRP3.
6.Evolution-guided design of mini-protein for high-contrast in vivo imaging.
Nongyu HUANG ; Yang CAO ; Guangjun XIONG ; Suwen CHEN ; Juan CHENG ; Yifan ZHOU ; Chengxin ZHANG ; Xiaoqiong WEI ; Wenling WU ; Yawen HU ; Pei ZHOU ; Guolin LI ; Fulei ZHAO ; Fanlian ZENG ; Xiaoyan WANG ; Jiadong YU ; Chengcheng YUE ; Xinai CUI ; Kaijun CUI ; Huawei CAI ; Yuquan WEI ; Yang ZHANG ; Jiong LI
Acta Pharmaceutica Sinica B 2025;15(10):5327-5345
Traditional development of small protein scaffolds has relied on display technologies and mutation-based engineering, which limit sequence and functional diversity, thereby constraining their therapeutic and application potential. Protein design tools have significantly advanced the creation of novel protein sequences, structures, and functions. However, further improvements in design strategies are still needed to more efficiently optimize the functional performance of protein-based drugs and enhance their druggability. Here, we extended an evolution-based design protocol to create a novel minibinder, BindHer, against the human epidermal growth factor receptor 2 (HER2). It not only exhibits super stability and binding selectivity but also demonstrates remarkable properties in tissue specificity. Radiolabeling experiments with 99mTc, 68Ga, and 18F revealed that BindHer efficiently targets tumors in HER2-positive breast cancer mouse models, with minimal nonspecific liver absorption, outperforming scaffolds designed through traditional engineering. These findings highlight a new rational approach to automated protein design, offering significant potential for large-scale applications in therapeutic mini-protein development.
7.A thermo-sensitive hydrogel targeting macrophage reprogramming for sustained osteoarthritis pain relief.
Yue LIU ; Kai ZHOU ; Xinlong HE ; Kun SHI ; Danrong HU ; Chenli YANG ; Jinrong PENG ; Yuqi HE ; Guoyan ZHAO ; Yi KANG ; Yujun ZHANG ; Yue'e DAI ; Min ZENG ; Feier XIAN ; Wensheng ZHANG ; Zhiyong QIAN
Acta Pharmaceutica Sinica B 2025;15(11):6034-6051
Osteoarthritis (OA) causes chronic pain that significantly impairs quality of life, with current treatments often proving insufficient and accompanied by adverse effects. Recent research has identified the dorsal root ganglion (DRG) and its resident macrophages as crucial mediators of chronic OA pain through neuroinflammation driven by macrophage polarization. We present a novel injectable thermo-sensitive hydrogel system, KAF@PLEL, designed to deliver an anti-inflammatory peptide (KAF) specifically to the DRG. This biodegradable hydrogel enables sustained KAF release, promoting the reprogramming of DRG macrophages from pro-inflammatory to anti-inflammatory phenotypes. Through comprehensive in vitro and in vivo studies, we evaluated the hydrogel's biocompatibility, effects on macrophage polarization, and therapeutic efficacy in chronic OA pain management. The system demonstrated significant capabilities in preserving macrophage mitochondrial function, suppressing neuroinflammation, alleviating chronic OA pain, reducing cartilage degradation, and improving motor function in OA rat models. The sustained-release properties of KAF@PLEL enabled prolonged therapeutic effects while minimizing systemic exposure and side effects. These findings suggest that KAF@PLEL represents a promising therapeutic approach for improving outcomes in OA patients through targeted, sustained treatment.
8.tRF Prospect: tRNA-derived Fragment Target Prediction Based on Neural Network Learning
Dai-Xi REN ; Jian-Yong YI ; Yong-Zhen MO ; Mei YANG ; Wei XIONG ; Zhao-Yang ZENG ; Lei SHI
Progress in Biochemistry and Biophysics 2025;52(9):2428-2438
ObjectiveTransfer RNA-derived fragments (tRFs) are a recently characterized and rapidly expanding class of small non-coding RNAs, typically ranging from 13 to 50 nucleotides in length. They are derived from mature or precursor tRNA molecules through specific cleavage events and have been implicated in a wide range of cellular processes. Increasing evidence indicates that tRFs play important regulatory roles in gene expression, primarily by interacting with target messenger RNAs (mRNAs) to induce transcript degradation, in a manner partially analogous to microRNAs (miRNAs). However, despite their emerging biological relevance and potential roles in disease mechanisms, there remains a significant lack of computational tools capable of systematically predicting the interaction landscape between tRFs and their target mRNAs. Existing databases often rely on limited interaction features and lack the flexibility to accommodate novel or user-defined tRF sequences. The primary goal of this study was to develop a machine learning based prediction algorithm that enables high-throughput, accurate identification of tRF:mRNA binding events, thereby facilitating the functional analysis of tRF regulatory networks. MethodsWe began by assembling a manually curated dataset of 38 687 experimentally verified tRF:mRNA interaction pairs and extracting seven biologically informed features for each pair: (1) AU content of the binding site, (2) site pairing status, (3) binding region location, (4) number of binding sites per mRNA, (5) length of the longest consecutive complementary stretch, (6) total binding region length, and (7) seed sequence complementarity. Using this dataset and feature set, we trained 4 distinct machine learning classifiers—logistic regression, random forest, decision tree, and a multilayer perceptron (MLP)—to compare their ability to discriminate true interactions from non-interactions. Each model’s performance was evaluated using overall accuracy, receiver operating characteristic (ROC) curves, and the corresponding area under the ROC curve (AUC). The MLP consistently achieved the highest AUC among the four, and was therefore selected as the backbone of our prediction framework, which we named tRF Prospect. For biological validation, we retrieved 3 high-throughput RNA-seq datasets from the gene expression omnibus (GEO) in which individual tRFs were overexpressed: AS-tDR-007333 (GSE184690), tRF-3004b (GSE197091), and tRF-20-S998LO9D (GSE208381). Differential expression analysis of each dataset identified genes downregulated upon tRF overexpression, which we designated as putative targets. We then compared the predictions generated by tRF Prospect against those from three established tools—tRFTar, tRForest, and tRFTarget—by quantifying the number of predicted targets for each tRF and assessing concordance with the experimentally derived gene sets. ResultsThe proposed algorithm achieved high predictive accuracy, with an AUC of 0.934. Functional validation was conducted using transcriptome-wide RNA-seq datasets from cells overexpressing specific tRFs, confirming the model’s ability to accurately predict biologically relevant downregulation of mRNA targets. When benchmarked against established tools such as tRFTar, tRForest, and tRFTarget, tRF Prospect consistently demonstrated superior performance, both in terms of predictive precision and sensitivity, as well as in identifying a higher number of true-positive interactions. Moreover, unlike static databases that are limited to precomputed results, tRF Prospect supports real-time prediction for any user-defined tRF sequence, enhancing its applicability in exploratory and hypothesis-driven research. ConclusionThis study introduces tRF Prospect as a powerful and flexible computational tool for investigating tRF:mRNA interactions. By leveraging the predictive strength of deep learning and incorporating a broad spectrum of interaction-relevant features, it addresses key limitations of existing platforms. Specifically, tRF Prospect: (1) expands the range of detectable tRF and target types; (2) improves prediction accuracy through multilayer perceptron model; and (3) allows for dynamic, user-driven analysis beyond database constraints. Although the current version emphasizes miRNA-like repression mechanisms and faces challenges in accurately capturing 5'UTR-associated binding events, it nonetheless provides a critical foundation for future studies aiming to unravel the complex roles of tRFs in gene regulation, cellular function, and disease pathogenesis.
9.Clinical application of three-dimensional printing technology combined with customized bone plate in the treatment of acetabulum fracture.
Yan-Chao ZANG ; Quan-Yong ZHAO ; Li YANG ; Jin-Zeng ZUO ; Wei QI ; Wei-Dong LIANG ; Jie XING
China Journal of Orthopaedics and Traumatology 2025;38(2):203-207
OBJECTIVE:
To explore the application value and clinical effect of 3D printing combined with customized bone plate in the treatment of acetabular fracture.
METHODS:
From June 2020 to June 2022, 11 patients with acetabular fractures underwent preoperative planning using 3D printing technology and were treated with customized bone plates including 8 males and 3 females, aged 25 to 66 years old. The fractures were classified according to Letournel-Judet:4 posterior wall fractures, 2 T-type fractures, 2 transverse posterior wall fractures, 2 double column fractures, and 1 anterior column with posterior semi-transverse fractures. The operative time, intraoperative blood loss, intraoperative fluoroscopy times, postoperative drainage volume, postoperative fracture healing time, and hip function score were recorded and analyzed.
RESULTS:
The operation time of 11 patients was 80 to 150 min, intraoperative blood volume was 150 to 700 ml, fluoroscopy frequency was 2 to 6, postoperative drainage flow was 60 to 195 ml, and the fracture healing time was 2.5 to 6.0 months. Fracture reduction was evaluated according to Matta score:anatomical reduction in 3 cases and satisfactory reduction in 8 cases. Eleven patients were followed up for 7 to 18 months. The hip Merle d'Aubigne function scores were excellent in 6 cases, good in 3 cases, fair in 1 case and poor in 1 case. Incision fat liquefaction occurred in 1 case and obturator nerve traction in 1 case.
CONCLUSION
The application of 3D printing technology combined with customized bone plates in the treatment of acetabular fracture is effective. In addition, the printed model can provide the operator with the results of the three-dimensional shape of the fracture, which is convenient for surgical reduction and effectively improves the efficiency of surgery.
Humans
;
Female
;
Male
;
Middle Aged
;
Acetabulum/surgery*
;
Printing, Three-Dimensional
;
Adult
;
Aged
;
Bone Plates
;
Fractures, Bone/surgery*
;
Fracture Fixation, Internal/methods*
10.Early results and indications of Stand-alone oblique lateral interbody fusion in lumbar lesions.
Zhong-You ZENG ; Xing ZHAO ; Wei YU ; Yong-Xing SONG ; Shun-Wu FAN ; Xiang-Qian FANG ; Fei PEI ; Shi-Yang FAN ; Guo-Hao SONG
China Journal of Orthopaedics and Traumatology 2025;38(5):454-464
OBJECTIVE:
To summarize the early clinical results and safety of Stand-alone OLIF application of lumbar lesions, and explored its surgical indications.
METHODS:
Total of 92 cases of lumbar spine lesions treated with Stand-alone OLIF at two medical centers from October 2014 to December 2018 were retrospectively analyzed, including 30 males and 62 females with an average age of (61.20±12.94) years old ranged from 32 to 83 years old. There were 20 cases of lumbar spinal stenosis, 15 cases of lumbar disc degeneration, 11 cases of lumbar degenerative spondylolisthesis, 6 cases of discogenic low back pain, 7 cases of giant lumbar disc herniation, 13 cases of primary lumbar discitis, 6 cases of adjacent vertebral disease after lumbar internal fixation surgery, and 14 cases of degenerative lumbar scoliosis. Pre-operative dual energy X-ray bone density examination 31 cases' T-values ranged from -1 to -2.4, 8 cases' T-values ranged from -2.5 to -3.5, and the rest had normal bone density. The number of fusion segments: 68 cases of single segment, 9 cases of two segment, 12 cases of three segment , and 3 cases of four segment. Fusion site:L1,2 1 case, L2,3 4 cases, L3,4 10 cases, L4,5 53 cases, L2,3-L3,4 3 cases, L3,4-L4,5 6 cases, L1,2L2,3L3,4 1 case, L1,2L3,4L4,5 1 case, L2,3L3,4L4,5 10 cases, L1,2L2,3L3,4L4,5 3 cases. The clinical results and imaging results of this group of cases were observed, as well as the complications.
RESULTS:
The surgical time ranged from 40 to 140 minutes with an average of (60.92±27.40) minutes. The intraoperative bleeding volume was 20 to 720 ml with an average of (68.22±141.60) ml. The patients had a follow-up period of 6 to 84 months with an average of (38.50±12.75) months. The height of the intervertebral space recovered from (9.23±1.94) mm in preoperative to (12.68±2.01) mm in postoperative, and (9.11±1.72) mm at the last follow-up, there was a statistically significant difference(F=6.641, P=0.008);there was also a statistically significant difference between the postoperative and preoperative height of the intervertebral space(t=9.27, P<0.000 1);and there was also a statistically significant difference (t=10.06, P<0.000 1) between the last follow-up and postoperative height of the intervertebral space. At the last follow-up, cage subsidence grading was as follows:level 0 in 69 cases (76 segments), levelⅠin 17 cases (43 segments), level Ⅱin 5 cases (14 segments), and level Ⅲ in 1 case (1 segment);according to the number of segments, normal subsidence accounts for 56.72%, abnormal subsidence accounts for 43.28%. Bone mineral desity of normal subsidence groups was -0.50±0.07 whinch was better than that the abnormal subsidence groups -2.10±0.43, and the difference was statistically significant(χ2=2.275, P=0.014). As well as there was a statistically significant difference in the patient's VAS of backache from (6.28±2.11) in preoperative to (1.48±0.59) in last follow-up(t=8.56, P<0.05). The ODI recovered from (36.30±7.52)% before surgery to (10.20±2.50)% at the last follow-up, with a statistically significant difference (t=7.79, P<0.000 1). Complications involved 4 cases of intraoperative vascular injury, 21 cases of endplate injury, and 4 cases of combined vertebral fractures. The incision skin has no necrosis or infection. There were 4 cases of left sympathetic chain injury, 4 cases of transient left hip flexion weakness, 2 cases of left thigh anterolateral numbness with quadriceps femoris weakness, and 1 case of incomplete intestinal obstruction;8 cases were treated with posterior pedicle screw fixation due to fusion cage settlement accompanied by stubborn lower back pain, and 6 cases were treated with fusion cage settlement and lateral displacement. According to the actual number of cases, there were 38 complications, with an incidence rate of 41.3%.
CONCLUSION
The application of Stand alone OLIF in lumbar spine disease fusion has achieved good early results, with obvious clinical advantages, but also there are high probability of complications. It is recommended to choose carefully. It is necessary to continuously summarize and gradually clarify and complete the surgical indications and specific case selection criteria.
Humans
;
Male
;
Female
;
Middle Aged
;
Spinal Fusion/methods*
;
Lumbar Vertebrae/injuries*
;
Aged
;
Adult
;
Retrospective Studies
;
Aged, 80 and over

Result Analysis
Print
Save
E-mail