1.Network toxicology and its application in studying exogenous chemical toxicity
Yanli LIN ; Zehua TAO ; Zhao XIAO ; Chenxu HU ; Bobo YANG ; Ya WANG ; Rongzhu LU
Journal of Environmental and Occupational Medicine 2025;42(2):238-244
With the continuous development of society, a large number of new chemicals are continuously emerging, which presents a challenge to current risk assessment and safety management of chemicals. Traditional toxicology research methods have certain limitations in quickly, efficiently, and accurately assessing the toxicity of many chemicals, and cannot meet the actual needs. In response to this challenge, computational toxicology that use mathematical and computer models to achieve the prediction of chemical toxicity has emerged. In the meantime, as researchers increasingly pay attention to understanding the interaction mechanisms between exogenous chemical substances and the body from the system level, and multiomics technologies develop rapidly such as genomics, transcriptomics, proteomics, and metabolomics, huge amounts of data have been generated, providing rich information resources for studying the interactions between chemical substances and biological molecules. System toxicology and network toxicology have also developed accordingly. Of these, network toxicology can integrate these multiomics data to construct biomolecular networks, and then quickly predict the key toxicological targets and pathways of chemicals at the molecular level. This paper outlined the concept and development of network toxicology, summarized the main methods and supporting tools of network toxicology research, expounded the application status of network toxicology in studying potential toxicity of exogenous chemicals such as agricultural chemicals, environmental pollutants, industrial chemicals, and foodborne chemicals, and analyzed the development prospects and limitations of network toxicology research. This paper aimed to provide a reference for the application of network toxicology in other fields.
2.Effect of the reduction of back optic zone diameters of orthokeratology lenses on corneal higher-order aberrations
Dandan ZHAO ; Yubing ZHAO ; Yang HE ; Shengrong LU ; Yuan YUAN
International Eye Science 2025;25(2):213-219
AIM: To investigate the alterations in corneal aberration and relative refractive power following the reduction of back optic zone diameters(BOZD)of orthokeratology lenses.METHODS: Myopic children aged 8-12 years, deemed suitable and willing to wear orthokeratology lenses, were randomly allocated to wear lenses with a 6.0 mm BOZD or a 5.0 mm BOZD. Data collection included changes in higher-order aberrations, relative refractive power and the treatment zone diameter of the two groups after wearing lenses for 1 d, 1 wk, 1, and 3 mo. The correlation of increase in corneal higher-order aberrations with refractive power was analyzed.RESULTS: The increases in total higher-order aberrations, spherical aberrations and coma aberrations varied over time following lens wear(all P<0.001), and there were no statistically significant differences in the changes of total higher-order aberrations and coma aberrations between the two groups of patients(all P>0.05). A significant difference was observed in the increment of spherical aberrations in the 5 mm range between the two groups of patients, which varied over time(Ftime=40.179, Ptime<0.001; Fgroup=11.948, Pgroup=0.001; Finteraction=3.262, Pinteraction=0.03). A significant difference was observed in the increment of spherical aberrations in the 4 mm range between the two patient groups(Ftime=34.462, Ptime<0.001; Fgroup=13.094, Pgroup<0.001; Finteraction=1.372, Pinteraction=0.25). There was no statistically significant distinction in relative refractive power between the two groups(Fgroup=0.048, Pgroup=0.83; Finteraction=1.208, Pinteraction=0.31); however, relative refractive power changed over time(Ftime=40.030, Ptime<0.001). The difference in treatment zone diameter between the two groups was statistically significant, with changes over time(Ftime=11.212, Ptime<0.001; Fgroup=74.073, Pgroup<0.001; Finteraction=0.312, Pinteraction=0.82). The total higher-order aberrations, spherical aberrations, and coma aberrations in 4, 5 and 6 mm range showed a positive correlation with relative refractive power values(all P<0.001). Statistically significant difference was observed in the axial length between the two groups after wearing lenses for 3, 6 and 12 mo(Ftime=185.398, Ptime<0.001; Fgroup=5.618, Pgroup=0.02; Finteraction=2.315, Pinteraction=0.11).CONCLUSION: Orthokeratology lenses leaded to elevated higher-order aberrations. Orthokeratology lenses with smaller BOZD produced significantly greater spherical aberrations at 4 and 5 mm range and smaller treatment zone diameters. The corneal total higher-order aberration was positively correlated with relative refractive power. Wearing orthokeratology lenses with a smaller BOZD can cause slower axial growth and better myopia control.
3.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
4.Research advances in cancer therapy of cisplatin liposome
Weixuan ZHAO ; Xue LU ; Ruilin ZHAO ; Yanmei ZHANG ; Ye YANG ; Deying CAO
China Pharmacy 2025;36(3):356-361
Chemotherapy based on cisplatin or its combination therapy is a common cancer treatment method. However, the non-specific side effects of cisplatin, poor pharmacokinetic properties of small molecule drugs, and susceptibility to drug resistance greatly limit the clinical application of cisplatin as first-line anti-tumor drug. With the development of nanocarrier technology, liposomes have become an ideal carrier for delivering cisplatin drugs due to their excellent properties of targeting, reducing toxicity, and enhancing efficacy. This paper reviews the status of cisplatin liposome both domestically and internationally which have entered clinical trials, including L-NDDP,SPI-077®, Lipoplatin®,LiPlaCis,SLIT and ILC, etc. Currently, only Lipoplatin® and ILC are showing good potential in cancer therapy. Although cisplatin liposome has made some progress in reducing systemic toxicity and improving treatment efficiency in clinical research, there is still potential for further improvement in tumor targeting and reducing side effects. In the future, more low-toxicity and efficient cisplatin liposomes can be developed through formulation technologies such as co-delivery liposome, stimuli-responsive liposome and targeting liposome.
5.The Refinement and Innovation of The UV Cross-linking and Immunoprecipitation
Jia-Min ZHAO ; Cheng-Jiang LU ; Ming YANG ; Nashun BUHE ; Gang WANG
Progress in Biochemistry and Biophysics 2025;52(4):1036-1052
RNA-binding proteins (RBPs) are ubiquitous components within cells, fulfilling essential functions in a myriad of biological processes. These proteins interact with RNA molecules to regulate gene expression at various levels, including transcription, splicing, transport, localization, translation, and degradation. Understanding the intricate network of RBP-RNA interactions is crucial for deciphering the complex regulatory mechanisms that govern cellular function and organismal development. Ultravidet (UV) cross-linking and immunoprecipitation (CLIP) stands out as a powerful approach designed to map the precise locations where RBPs bind to RNA. By using UV light to create covalent bonds between proteins and RNA, followed by immunoprecipitation to isolate the protein-RNA complexes, researchers can identify the direct targets of specific RBPs. The advent of high-throughput sequencing technologies has revolutionized CLIP, enabling the identification of not only the types but also the exact sequences of RNA bound by RBPs on a genome-wide scale. The evolution of CLIP has led to the development of specialized variants, each with unique features that address specific challenges and expand the scope of what can be studied. High-throughput sequencing CLIP (HITS-CLIP) was one of the first advancements, significantly increasing the throughput and resolution of RNA-protein interaction mapping. Photoactivatable-ribonucleoside-enhanced CLIP (PAR-CLIP) introduced the use of photoactivatable ribonucleosides to enhance cross-linking efficiency and specificity, reducing background noise and improving the detection of low-abundance RNA-protein interactions. Individual-nucleotide resolution CLIP (iCLIP) further refined the technique, achieving unprecedented precision by resolving individual nucleotides involved in RBP binding, which is particularly valuable for studying the fine details of RNA structure and function. Despite the remarkable progress, there remains room for improvement in CLIP technology. Researchers continue to seek methods to increase sensitivity, reduce technical variability, and improve the reproducibility of results. Advances in sample preparation, data analysis algorithms, and computational tools are critical for addressing these challenges. Moreover, the application of CLIP to more diverse biological systems, including non-model organisms and clinical samples, requires the development of tailored protocols and the optimization of existing ones. Looking forward, the field of RNA biology is poised to benefit greatly from ongoing innovations in CLIP technology. The exploration of non-canonical RNA-protein interactions, such as those involving long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), promises to reveal new layers of cellular regulation and may lead to the discovery of novel therapeutic targets. Furthermore, integrating CLIP data with other omics approaches, such as proteomics and metabolomics, will provide a more comprehensive understanding of the dynamic interplay between RNA and its binding partners within the cell. In conclusion, the continuous refinement and expansion of CLIP techniques have not only deepened our knowledge of RNA biology but have also opened up new avenues for investigating the molecular underpinnings of health and disease. As the technology matures, it is expected to play an increasingly pivotal role in both basic and applied research, contributing to the advancement of medical science and biotechnology.
6.Introduction and enlightenment of the Recommendations and Expert Consensus for Plasm a and Platelet Transfusion Practice in Critically ill Children: from the Transfusion and Anemia Expertise Initiative-Control/Avoidance of Bleeding (TAXI-CAB)
Lu LU ; Jiaohui ZENG ; Hao TANG ; Lan GU ; Junhua ZHANG ; Zhi LIN ; Dan WANG ; Mingyi ZHAO ; Minghua YANG ; Rong HUANG ; Rong GUI
Chinese Journal of Blood Transfusion 2025;38(4):585-594
To guide transfusion practice in critically ill children who often need plasma and platelet transfusions, the Transfusion and Anemia Expertise Initiative-Control/Avoidance of Bleeding (TAXI-CAB) developed Recommendations and Expert Consensus for Plasma and Platelet Transfusion Practice in Critically Ill Children. This guideline addresses 53 recommendations related to plasma and platelet transfusion in critically ill children with 8 kinds of diseases, laboratory testing, selection/treatment of plasma and platelet components, and research priorities. This paper introduces the specific methods and results of the recommendation formation of the guideline.
7.Shaoyaotang Alleviates Damage of Tight Junction Proteins in Caco-2 Cell Model of Inflammation by Regulating RhoA/ROCK Pathway
Nianjia XIE ; Dongsheng WU ; Hui CAO ; Yu ZHANG ; Yuting YANG ; Bo ZOU ; Da ZHAO ; Yi LU ; Mingsheng WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):70-77
ObjectiveTo investigate the protective effect and mechanism of Shaoyaotang (SYD) on the lipopolysaccharide (LPS)-induced damage of tight junction proteins in the human colorectal adenocarcinoma (Caco-2) cell model of inflammation via the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil forming protein kinase (ROCK) pathway. MethodsCaco-2 cells were grouped as follows: Blank, model (LPS, 10 mg·L-1), SYD-containing serum (10%, 15%, and 20%), and inhibitor (Fasudil, 25 μmol·L-1). After 24 hours of intervention, the cell viability in each group was examined by the cell-counting kit 8 (CCK-8) method. Enzyme-linked immunosorbent assay was employed to determine the levels of endothelin-1 (ET-1), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the mRNA and protein levels, respectively, of RhoA, ROCK2, claudin-5, and zonula occludens-1 (ZO-1) in cells of each group. ResultsCompared with the blank group, the model group showcased a marked reduction in the cell viability (P<0.01), elevations in the levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.01), declines in both mRNA and protein levels of ZO-1 and claudin-5 (P<0.01), and rises in mRNA and protein levels of RhoA and ROCK2 (P<0.01). Compared with the model group, the Shaoyaotang-containing serum (10%, 15%, and 20%) groups had enhanced cell viability (P<0.01), lowered levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.01), up-regulated mRNA and protein levels of ZO-1 and claudin-5 (P<0.05, P<0.01), and down-regulated mRNA and protein levels of RhoA and ROCK2 (P<0.01). Moreover, the inhibitor group and the 15% and 20% Shaoyaotang-containing serum groups had lower levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.05, P<0.01), higher mRNA and protein levels of ZO-1 and claudin-5 (P<0.05, P<0.01), and lower mRNA and protein levels of RhoA and ROCK2 (P<0.05, P<0.01) than the 10% Shaoyaotang-containing serum group. ConclusionThe Shaoyaotang-containing serum can lower the levels of LPS-induced increases in levels of inflammatory cytokines and endothelin to ameliorate the damage of tight junction proteins of the Caco-2 cell model of inflammation by regulating the expression of proteins in the RhoA/ROCK pathway.
8.Mechanism of Exogenous Melatonin in Inhibiting Early Bolting in Angelica sinensis
Jiang ZHAO ; Zhanwen TANG ; Tao YANG ; Jie SHA ; Tong PENG ; Weiwen LU ; Yinquan WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):234-240
ObjectiveThis study aims to investigate the effects of different sizes of seedlings and melatonin treatment on physiological and biochemical indicators and bolting-related gene expression in Angelica sinensis, find substances related to early bolting, and elucidate the inhibitory mechanism of melatonin on bolting. MethodsSpectrophotometry was used to detect the related enzyme activities of A. sinensis leaves. The contents of endogenous hormones and polyamines were detected using ultra-high performance liquid chromatography-tandem mass spectrometry. Real-time polymerase chain reaction (Real-time PCR) was used to detect the expression levels of bolting-related genes. Inter-group differential indicator analysis, orthogonal partial least squares discriminant analysis, and principal component analysis were comprehensively applied to identify factors related to early bolting. ResultsEndogenous jasmonic acid and melatonin were identified as the most important factors affecting early bolting. Secondly, the activity of antioxidant enzymes, abscisic acid content, gibberellin content, and the expression levels of CO3, HD3A, and FD genes had important effects on the bolting process. Compared with small seedlings, exogenous melatonin treatment mainly inhibited early bolting by increasing endogenous melatonin content, reducing gibberellin content, and decreasing the expression levels of SOC1 and FD genes. ConclusionExogenous melatonin can inhibit early bolting in A. sinensis by regulating its physiological, biochemical, and gene expression levels.
9.Key Points for Quality Management in Phase Ⅰ Clinical Trials of Anti-Tumor Drugs
Li GONG ; Bin LIAO ; Jie SHEN ; Juan ZHAO ; Yi GONG ; Xiaoxiao LU ; Huiyao YANG ; Sha LI ; Yongsheng LI
Cancer Research on Prevention and Treatment 2025;52(5):347-354
Phase Ⅰ clinical trials play a crucial role in the research and development of new drugs, serving as the initial studies to assess their safety, tolerability, effectiveness, and pharmacokinetic properties in humans. These trials involve uncertainties regarding safety and efficacy. Comprehensive management of all aspects of phase Ⅰ clinical trials for anti-tumor drugs is crucial to protect the rights and safety of participants. This article provides an in-depth analysis of the key points and precautions necessary for effective quality control throughout the process. The analysis is informed by guidelines such as the “Good Clinical Practice for Drugs” “Key Points and Judgment Principles for Drug Registration Verification” “Key Points and Judgment Principles for Supervision and Inspection of Drug Clinical Trial Institutions” and the standard operating procedures for quality control of the center. Topics discussed include informed consent, inclusion criteria, experimental drugs, biological samples, adverse events, and serious adverse events. The goal is to standardize quality control in phase Ⅰ clinical trials of anti-tumor drugs, ensure the authenticity and reliability of clinical trial data, and protect the rights and safety of participants.
10.Shaoyaotang Alleviates Damage of Tight Junction Proteins in Caco-2 Cell Model of Inflammation by Regulating RhoA/ROCK Pathway
Nianjia XIE ; Dongsheng WU ; Hui CAO ; Yu ZHANG ; Yuting YANG ; Bo ZOU ; Da ZHAO ; Yi LU ; Mingsheng WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):70-77
ObjectiveTo investigate the protective effect and mechanism of Shaoyaotang (SYD) on the lipopolysaccharide (LPS)-induced damage of tight junction proteins in the human colorectal adenocarcinoma (Caco-2) cell model of inflammation via the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil forming protein kinase (ROCK) pathway. MethodsCaco-2 cells were grouped as follows: Blank, model (LPS, 10 mg·L-1), SYD-containing serum (10%, 15%, and 20%), and inhibitor (Fasudil, 25 μmol·L-1). After 24 hours of intervention, the cell viability in each group was examined by the cell-counting kit 8 (CCK-8) method. Enzyme-linked immunosorbent assay was employed to determine the levels of endothelin-1 (ET-1), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to determine the mRNA and protein levels, respectively, of RhoA, ROCK2, claudin-5, and zonula occludens-1 (ZO-1) in cells of each group. ResultsCompared with the blank group, the model group showcased a marked reduction in the cell viability (P<0.01), elevations in the levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.01), declines in both mRNA and protein levels of ZO-1 and claudin-5 (P<0.01), and rises in mRNA and protein levels of RhoA and ROCK2 (P<0.01). Compared with the model group, the Shaoyaotang-containing serum (10%, 15%, and 20%) groups had enhanced cell viability (P<0.01), lowered levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.01), up-regulated mRNA and protein levels of ZO-1 and claudin-5 (P<0.05, P<0.01), and down-regulated mRNA and protein levels of RhoA and ROCK2 (P<0.01). Moreover, the inhibitor group and the 15% and 20% Shaoyaotang-containing serum groups had lower levels of ET-1, TNF-α, IL-1β, and IL-6 (P<0.05, P<0.01), higher mRNA and protein levels of ZO-1 and claudin-5 (P<0.05, P<0.01), and lower mRNA and protein levels of RhoA and ROCK2 (P<0.05, P<0.01) than the 10% Shaoyaotang-containing serum group. ConclusionThe Shaoyaotang-containing serum can lower the levels of LPS-induced increases in levels of inflammatory cytokines and endothelin to ameliorate the damage of tight junction proteins of the Caco-2 cell model of inflammation by regulating the expression of proteins in the RhoA/ROCK pathway.

Result Analysis
Print
Save
E-mail