1.Analysis of diabetes mortality characteristics and potential years of life lost among residents of Huangpu District, Shanghai, 1993‒2021
Weiyi LI ; Junfeng ZHAO ; Yuming MAO ; Yi WANG ; Zhenzi ZUO ; Qiang GAO ; Junling SHI
Shanghai Journal of Preventive Medicine 2025;37(1):48-52
ObjectiveTo investigate the trends in diabetes mortality and potential years of life lost (PYLL) among residents of Huangpu District, Shanghai from 1993 to 2021, to analyze the long-term trends of diabetic patients with different characteristics and to provide a reference for scientific prevention and control of diabetes in aging urban areas. MethodsDiabetes mortality data were obtained from the Huangpu District cause of death registration records in the Shanghai death cause registration system. Indicators such as crude mortality rate, standardized mortality rate, potential years of life lost (PYLL), average years of life lost (AYLL), annual percentage change (APC), and average annual percentage change (AAPC) were used to analyze diabetes-related mortality and life loss. Statistical analyses were performed using software SPSS 21.0 and Joinpoint 5.0.2. ResultsFrom 1993 to 2021, the average annual crude mortality rate of diabetes in Huangpu District was 46.56/100 000, and the average annual standardized mortality rate was 20.44/100 000. The crude mortality rate and standardized mortality rate of diabetes for female residents were higher than those for males. The crude mortality rate showed an overall increasing trend [AAPC=2.81% (95%CI: 0.20%‒5.49%), P<0.05], while the increase in standardized mortality rate significantly slowed [AAPC=0.15% (95%CI: -2.27%‒2.63%)], P<0.05]. The mortality rate rose rapidly in the 70‒74 years age group and peaked in the 85‒ years age group (607.69/100 000). Diabetes accounted for a cumulative PYLL of22 741 person-years, with an average annual AYLL of 1.88 years and an average annual potential years of life lost rate (PYLLR) of 0.82‰. Male residents had higher PYLL, AYLL, and PYLLR than females. ConclusionDiabetes mortality rates in Huangpu District have increased year by year, resulting in significant life loss. However, the age-standardized mortality rate increase has markedly slowed. Efforts should focus on elderly diabetic patients aged ≥70 years, by leveraging platforms such as community-based chronic disease health support centers, efforts should be made to enhance diabetes screening service for middle-aged and elderly residents. Consequently, elderly diabetic patients’ awareness of diabetes and responce to related complications is improved, which would be conducive to controling the progression of complications and reducing the mortolity risk of diabetes.
2.Osteogenic ability and autophagy level between normal and inflammatory periodontal ligament stem cells
Jiaqi MAO ; Liru ZHAO ; Dongru YANG ; Yongqing HU ; Bowen DAI ; Shujuan LI
Chinese Journal of Tissue Engineering Research 2025;29(1):74-79
BACKGROUND:Inflammation affects the osteogenic differentiation of periodontal ligament stem cells,and the osteogenic ability and autophagy level of periodontal ligament stem cells are closely related.However,there are no relevant reports on whether inflammation affects the osteogenic ability and autophagy level of periodontal ligament stem cells at different stages of osteogenic differentiation. OBJECTIVE:To explore alkaline phosphatase expression and autophagy periodontal ligament stem cells levels in periodontitis and normal conditions. METHODS:Periodontal ligament stem cells from normal and periodontitis patients were isolated and cultured,and underwent Vimentin,pan-CK,and Stro-1 fluorescence staining.At 3,7,and 14 days of osteogenic differentiation,western blot assay was used to detect the protein expression levels of alkaline phosphatase,LC3B,Beclin1,and ATG5 in normal and inflammatory periodontal ligament stem cells.The mRNA expression levels of alkaline phosphatase,bone sialoprotein,osteocalcin,Runx2,LC3B,Beclin1,and ATG5 were detected by real-time PCR. RESULTS AND CONCLUSION:(1)Stro-1 was positive,Vimentin was positive,and pan CK was negative in periodontal ligament stem cells.(2)At 3,7,and 14 days after osteogenic differentiation,compared with normal periodontal ligament stem cells,the mineralization nodules formed by periodontal ligament stem cells from inflammatory sources were significantly reduced(P<0.01);the expression of alkaline phosphatase protein and mRNA was significantly lower(P<0.05);the mRNA expression levels of bone sialoprotein,osteocalcin,and Runx2 were significantly decreased(P<0.05).(3)At 7 and 14 days after osteogenic differentiation,compared with normal periodontal ligament stem cells,the expression levels of ATG5,LC3B,and Beclin1 proteins and mRNA of periodontal ligament stem cells were downregulated(P<0.05).These findings suggest that inflammation reduces the activity of periodontal ligament stem cells in mineralizing nodule formation and the expression of alkaline phosphatase and weakens the autophagy potential of periodontal ligament stem cells at 7 and 14 days after osteogenic differentiation.
3.Wen-Shen-Tong-Du Decoction promoting spinal cord injury repair in mice
Ruihua ZHAO ; Sixian CHEN ; Yang GUO ; Lei SHI ; Chengjie WU ; Mao WU ; Guanglu YANG ; Haoheng ZHANG ; Yong MA
Chinese Journal of Tissue Engineering Research 2025;29(6):1118-1126
BACKGROUND:Previous studies have confirmed that Wen-Shen-Tong-Du Decoction can promote the recovery of spinal cord injury by inhibiting pyroptosis of splenic B cells,promoting the phagocytosis of myelin debris by microvascular endothelial cells,affecting the migration and infiltration of microglia,promoting the recovery of damaged neurons,and decreasing neuronal apoptosis after spinal cord injury,but the mechanism of this is still not clear. OBJECTIVE:To investigate the effect of Wen-Shen-Tong-Du Decoction on the triggering receptor expressed on myeloid cells 2(TREM2)and PI3K/Akt signaling pathways in mice following spinal cord injury. METHODS:Thirty-six C57BL/6 mice were selected and randomly divided into a sham-operation group,a model group and a Wen-Shen-Tong-Du Decoction group,with 12 mice in each group.In the model and Wen-Shen-Tong-Du Decoction groups,mouse models of T10 spinal cord injury were prepared by the modified Allen's method.On the 1st day after modeling,the Wen-Shen-Tong-Du Decoction group was given Wen-Shen-Tong-Du Decoction by gavage,and the sham-operation group and the model group were given saline by gavage once a day for 28 days.During the drug administration period,mouse motor function was evaluated by Basso Mouse Scale score and inclined plane test.On the 7th and 28th days after modeling,hematoxylin-eosin staining was used to observe the histopathological changes in the spinal cord tissue of the mice;immunofluorescence double staining was used to detect the protein expression of ionized calcium binding adaptor molecule 1(IBA1)and TREM2;and western blot assay was used to detect the expression of TREM2,PI3K,p-PI3K,Akt,p-Akt,Bcl2,Bax and Caspase3 in spinal cord tissue. RESULTS AND CONCLUSION:Basso Mouse Scale scores and inclined plane test results indicated that the motor function of the mouse hindlimbs was declined after spinal cord injury,and Wen-Shen-Tong-Du Decoction significantly improved motor function in mice with spinal cord injury.Hematoxylin-eosin staining results revealed that Wen-Shen-Tong-Du Decoction significantly ameliorated the pathological structure of spinal cord tissue compared with the model group,manifesting as reduced degrees of dorsal white matter and neuronal atrophy,decreased cytoplasmic vacuolization,and reduced inflammatory cell infiltration.Immunofluorescence double staining results showed that on the 7th day after modeling,the protein expression of IBA1 and TREM2 in the model group was lower than that in the sham-operation group(P<0.05),and the protein expression of IBA1 and TREM2 in the Wen-Shen-Tong-Du Decoction group was higher than that in the model group(P<0.05);on the 28th day after modeling,the protein expression of TREM2 in the model group was lower than that in the sham-operation group(P<0.05),and the protein expression of TREM2 in the spinal cord tissue of the mice in the Wen-Shen-Tong-Du Decoction group was higher than that in the model group(P<0.05).Western blot results analysis demonstrated that on the 7th day after modeling,compared with the sham-operation group,the model group exhibited a significant reduction in TREM2,PI3K,and Bcl2/Bax(P<0.05),as well as a significant increase in p-Akt,Bax and p-Akt/Aktp-PI3K(P<0.05);compared with the model group,the Wen-Shen-Tong-Du Decoction group showed a significant increase in TREM2,PI3K,p-PI3K,Akt,p-Akt,Bcl2,p-PI3K/PI3K,p-Akt/Ak,and Bcl2/Bax(P<0.05),as well as a significant decrease in Bax and Caspase3 protein expression(P<0.05).On the 28th day after modeling,compared with the sham-operation group,the model group exhibited a significant reduction in TREM2,PI3K,p-PI3K,Akt,p-Akt,Bcl2 and Bcl2/Bax(P<0.05),as well as a significant increase in Bax protein expression(P<0.05);compared with the model group,the Wen-Shen-Tong-Du Decoction group showed a significant increase in TREM2,PI3K,Akt,p-Akt,Bcl2,and Bcl2/Bax(P<0.05),as well as a significant decrease in Bax protein expression(P<0.05).To conclude,Wen-Shen-Tong-Du Decoction may activate the PI3K/Akt signaling pathway by up-regulating the expression of TREM2 protein in microglia,and then inhibit neuronal apoptosis,thus exerting neuroprotective effects and promoting the repair of spinal cord injury.
4.Research on The Role of Dopamine in Regulating Sleep and Wakefulness Through Exercise
Li-Juan HOU ; Ya-Xuan GENG ; Ke LI ; Zhao-Yang HUANG ; Lan-Qun MAO
Progress in Biochemistry and Biophysics 2025;52(1):88-98
Sleep is an instinctive behavior alternating awakening state, sleep entails many active processes occurring at the cellular, circuit and organismal levels. The function of sleep is to restore cellular energy, enhance immunity, promote growth and development, consolidate learning and memory to ensure normal life activities. However, with the increasing of social pressure involved in work and life, the incidence of sleep disorders (SD) is increasing year by year. In the short term, sleep disorders lead to impaired memory and attention; in the longer term, it produces neurological dysfunction or even death. There are many ways to directly or indirectly contribute to sleep disorder and keep the hormones, including pharmacological alternative treatments, light therapy and stimulus control therapy. Exercise is also an effective and healthy therapeutic strategy for improving sleep. The intensities, time periods, and different types of exercise have different health benefits for sleep, which can be found through indicators such as sleep quality, sleep efficiency and total sleep time. So it is more and more important to analyze the mechanism and find effective regulation targets during sleep disorder through exercise. Dopamine (DA) is an important neurotransmitter in the nervous system, which not only participates in action initiation, movement regulation and emotion regulation, but also plays a key role in the steady-state remodeling of sleep-awakening state transition. Appreciable evidence shows that sleep disorder on humans and rodents evokes anomalies in the dopaminergic signaling, which are also implicated in the development of psychiatric illnesses such as schizophrenia or substance abuse. Experiments have shown that DA in different neural pathways plays different regulatory roles in sleep behavior, we found that increasing evidence from rodent studies revealed a role for ventral tegmental area DA neurons in regulating sleep-wake patterns. DA signal transduction and neurotransmitter release patterns have complex interactions with behavioral regulation. In addition, experiments have shown that exercise causes changes in DA homeostasis in the brain, which may regulate sleep through different mechanisms, including cAMP response element binding protein signal transduction, changes in the circadian rhythm of biological clock genes, and interactions with endogenous substances such as adenosine, which affect neuronal structure and play a neuroprotective role. This review aims to introduce the regulatory effects of exercise on sleep disorder, especially the regulatory mechanism of DA in this process. The analysis of intracerebral DA signals also requires support from neurophysiological and chemical techniques. Our laboratory has established and developed an in vivo brain neurochemical analysis platform, which provides support for future research on the regulation of sleep-wake cycles by movement. We hope it can provide theoretical reference for the formulation of exercise prescription for clinical sleep disorder and give some advice to the combined intervention of drugs and exercise.
5.Analysis of clinical infection characteristics of multidrug-resistant organisms in hospitalized patients in a tertiary sentinel hospital in Shanghai from 2021 to 2023
Qi MAO ; Tenglong ZHAO ; Xihong LYU ; Zhiyuan GU ; Bin CHEN ; Lidi ZHAO ; Xifeng LI ; Xing ZHANG ; Liang TIAN ; Renyi ZHU
Shanghai Journal of Preventive Medicine 2025;37(2):156-159
ObjectiveTo understand the infection characteristics of multidrug-resistant organisms (MDROs) in hospitalized patients in a tertiary sentinel hospital in Shanghai, so as to provide an evidence for the development of targeted prevention and control measures. MethodsData of MDROs strains and corresponding medical records of some hospitalized patients in a hospital in Shanghai from 2021 to 2023 were collected, together with an analysis of the basic information, clinical treatment, underlying diseases and sources of sample collection. ResultsA total of 134 strains of MDROs isolated from hospitalized patients in this hospital were collected from 2021 to 2023 , including 63 strains of methicillin-resistant Staphylococcus aureus (MRSA), 57 strains of carbapenem-resistant Acinetobacter baumannii (CRAB), and 14 strains of carbapenem-resistant Klebsiella pneumoniae (CRKP). Of the 134 strains, 30 strains were found in 2021, 47 strains in 2022 and 57 strains in 2023. The male-to-female ratio of patients was 2.05∶1, with the highest percentage (70.90%) in the age group of 60‒<90 years. The primary diagnosis was mainly respiratory disease, with lung and respiratory tract as the cheif infection sites. There was no statistically significant difference in the distribution of strains between different genders and infection sites (P>0.05). However, the differences in the distribution of strains between different ages and primary diagnosis were statistically significant (P<0.05). Patients who were admitted to the intensive care unit (ICU), had urinary tract intubation, were not artery or vein intubated, were not on a ventilator, were not using immunosuppresants or hormones, and were not applying radiotherapy or chemotherapy were in the majority. There was no statistically significant difference in the distribution of strains for whether received radiotherapy or chemotherapy or not (P>0.05), while the differences in the distribution of strains with ICU admission history, urinary tract intubation, artery or vein intubation, ventilator use, and immunosuppresants or hormones use or not were statistically significant (all P<0.05). The type of specimen was mainly sputum, the hospitalized ward was mainly comprehensive ICU, the sampling time was mainly in the first quarter throughout the year, the number of underlying diseases was mainly between 1 to 2 kinds, the application of antibiotics ≥4 kinds, and those who didn’t receive any surgery recently accounted for the most. There were statistically significant differences in the distribution of strains between different specimen types, wards occupied and history of ICU stay (P<0.05), but no statistically significant difference in the distribution of strains between different sampling times, number of underlying diseases and types of antibiotics applied (P>0.05). ConclusionThe situation of prevention and control on MDROs in this hospital is still serious. Focus should be placed on high-risk factors’ and infection monitoring and preventive measures should be strengthened to reduce the incidence rate of MDROs infection.
6.Mechanisms of Gut Microbiota Influencing Reproductive Function via The Gut-Gonadal Axis
Ya-Qi ZHAO ; Li-Li QI ; Jin-Bo WANG ; Xu-Qi HU ; Meng-Ting WANG ; Hai-Guang MAO ; Qiu-Zhen SUN
Progress in Biochemistry and Biophysics 2025;52(5):1152-1164
Reproductive system diseases are among the primary contributors to the decline in social fertility rates and the intensification of aging, posing significant threats to both physical and mental health, as well as quality of life. Recent research has revealed the substantial potential of the gut microbiota in improving reproductive system diseases. Under healthy conditions, the gut microbiota maintains a dynamic balance, whereas dysfunction can trigger immune-inflammatory responses, metabolic disorders, and other issues, subsequently leading to reproductive system diseases through the gut-gonadal axis. Reproductive diseases, in turn, can exacerbate gut microbiota imbalance. This article reviews the impact of the gut microbiota and its metabolites on both male and female reproductive systems, analyzing changes in typical gut microorganisms and their metabolites related to reproductive function. The composition, diversity, and metabolites of gut bacteria, such as Bacteroides, Prevotella, and Firmicutes, including short-chain fatty acids, 5-hydroxytryptamine, γ-aminobutyric acid, and bile acids, are closely linked to reproductive function. As reproductive diseases develop, intestinal immune function typically undergoes changes, and the expression levels of immune-related factors, such as Toll-like receptors and inflammatory cytokines (including IL-6, TNF-α, and TGF-β), also vary. The gut microbiota and its metabolites influence reproductive hormones such as estrogen, luteinizing hormone, and testosterone, thereby affecting folliculogenesis and spermatogenesis. Additionally, the metabolism and absorption of vitamins can also impact spermatogenesis through the gut-testis axis. As the relationship between the gut microbiota and reproductive diseases becomes clearer, targeted regulation of the gut microbiota can be employed to address reproductive system issues in both humans and animals. This article discusses the regulation of the gut microbiota and intestinal immune function through microecological preparations, fecal microbiota transplantation, and drug therapy to treat reproductive diseases. Microbial preparations and drug therapy can help maintain the intestinal barrier and reduce chronic inflammation. Fecal microbiota transplantation involves transferring feces from healthy individuals into the recipient’s intestine, enhancing mucosal integrity and increasing microbial diversity. This article also delves into the underlying mechanisms by which the gut microbiota influences reproductive capacity through the gut-gonadal axis and explores the latest research in diagnosing and treating reproductive diseases using gut microbiota. The goal is to restore reproductive capacity by targeting the regulation of the gut microbiota. While the gut microbiota holds promise as a therapeutic target for reproductive diseases, several challenges remain. First, research on the association between gut microbiota and reproductive diseases is insufficient to establish a clear causal relationship, which is essential for proposing effective therapeutic methods targeting the gut microbiota. Second, although gut microbiota metabolites can influence lipid, glucose, and hormone synthesis and metabolism via various signaling pathways—thereby indirectly affecting ovarian and testicular function—more in-depth research is required to understand the direct effects of these metabolites on germ cells or granulosa cells. Lastly, the specific efficacy of gut microbiota in treating reproductive diseases is influenced by multiple factors, necessitating further mechanistic research and clinical studies to validate and optimize treatment regimens.
7.Neuroplasticity Mechanisms of Exercise-induced Brain Protection
Li-Juan HOU ; Lan-Qun MAO ; Wei CHEN ; Ke LI ; Xu-Dong ZHAO ; Yin-Hao WANG ; Zi-Zheng YANG ; Tian-He WEI
Progress in Biochemistry and Biophysics 2025;52(6):1435-1452
Neuroscience is a significant frontier discipline within the natural sciences and has become an important interdisciplinary frontier scientific field. Brain is one of the most complex organs in the human body, and its structural and functional analysis is considered the “ultimate frontier” of human self-awareness and exploration of nature. Driven by the strategic layout of “China Brain Project”, Chinese scientists have conducted systematic research focusing on “understanding the brain, simulating the brain, and protecting the brain”. They have made breakthrough progress in areas such as the principles of brain cognition, mechanisms and interventions for brain diseases, brain-like computation, and applications of brain-machine intelligence technology, aiming to enhance brain health through biomedical technology and improve the quality of human life. Due to limited understanding and comprehension of neuroscience, there are still many important unresolved issues in the field of neuroscience, resulting in a lack of effective measures to prevent and protect brain health. Therefore, in addition to actively developing new generation drugs, exploring non pharmacological treatment strategies with better health benefits and higher safety is particularly important. Epidemiological data shows that, exercise is not only an indispensable part of daily life but also an important non-pharmacological approach for protecting brain health and preventing neurodegenerative diseases, forming an emerging research field known as motor neuroscience. Basic research in motor neuroscience primarily focuses on analyzing the dynamic coding mechanisms of neural circuits involved in motor control, breakthroughs in motor neuroscience research depend on the construction of dynamic monitoring systems across temporal and spatial scales. Therefore, high spatiotemporal resolution detection of movement processes and movement-induced changes in brain structure and neural activity signals is an important technical foundation for conducting motor neuroscience research and has developed a set of tools based on traditional neuroscience methods combined with novel motor behavior decoding technologies, providing an innovative technical platform for motor neuroscience research. The protective effect of exercise in neurodegenerative diseases provides broad application prospects for its clinical translation. Applied research in motor neuroscience centers on deciphering the regulatory networks of neuroprotective molecules mediated by exercise. From the perspectives of exercise promoting neurogenesis and regeneration, enhancing synaptic plasticity, modulating neuronal functional activity, and remodeling the molecular homeostasis of the neuronal microenvironment, it aims to improve cognitive function and reduce the incidence of Parkinson’s disease and Alzheimer’s disease. This has also advanced research into the molecular regulatory networks mediating exercise-induced neuroprotection and facilitated the clinical application and promotion of exercise rehabilitation strategies. Multidimensional analysis of exercise-regulated neural plasticity is the theoretical basis for elucidating the brain-protective mechanisms mediated by exercise and developing intervention strategies for neurological diseases. Thus,real-time analysis of different neural signals during active exercise is needed to study the health effects of exercise throughout the entire life cycle and enhance lifelong sports awareness. Therefore, this article will systematically summarize the innovative technological developments in motor neuroscience research, review the mechanisms of neural plasticity that exercise utilizes to protect the brain, and explore the role of exercise in the prevention and treatment of major neurodegenerative diseases. This aims to provide new ideas for future theoretical innovations and clinical applications in the field of exercise-induced brain protection.
8.Efficacy and safety of robot-assisted modified Y-shaped ileal orthotopic neobladder reconstruction
Tonglei ZHAO ; Weipu MAO ; Yiduo WANG ; Bin XU ; Shuqiu CHEN ; Weidong ZHU ; Ming CHEN ; Jianping WU
Journal of Modern Urology 2025;30(2):137-142
Objective: To investigate the efficacy and safety of robot-assisted modified Y-shaped ileal orthotopic neobladder reconstruction,so as to provide reference for clinical practice. Methods: The clinical data of 44 patients who underwent robot-assisted laparoscopic radical cystectomy,lymph node dissection,and modified Y-shaped ileal orthotopic neobladder reconstruction during Feb.2020 and Aug.2022 were retrospectively analyzed.The surgical position,Trocar position,and key surgical steps were reported.The perioperative conditions,postoperative complications,neobladder volume,maximum urinary flow rate,postvoid residual,renal function,and urinary control function were recorded. Results: All 44 surgeries were successfully completed,with operation time of (314.32±51.02) min,modified Y-shaped ileal orthotopic neobladder reconstruction time of (103.52±9.56) min,and bleeding volume of (128.18±57.27) mL.The postoperative time for fluid intake was (4.16±0.86) days,catheter indwelling time was (14.02±3.20) days,and patients were discharged 1 to 2 days after catheter removal.Clavien-Dindo grade Ⅱ and Ⅲ complications occurred in 15 and 2 patients,respectively.During the follow-up of (20.77±5.90) months,dysuria occurred in 1 case,urethral calculi in 2 cases,and incomplete bowel obstruction in 2 cases. The postoperative neobladder capacity was (195.75±15.51) mL,maximal urinary flow rate (20.30±2.05) mL/s,postvoid residual (19.86±13.80) mL and serum creatinine (81.98±25.97) μmol/L. The incidence of daytime and nocturnal urinary incontinence 3,6 and 12 months after operation were 20.45% and 29.55%,11.36% and 18.18%,and 4.55% and 9.09%,respectively. Conclusion: Robot-assisted modified Y-shaped ileal orthotopic neobladder reconstruction has favorable efficacy and safety,and low incidence of postoperative complications,which can be applied in clinical practice.
9.The Regulatory Mechanisms of Dopamine Homeostasis in Behavioral Functions Under Microgravity
Xin YANG ; Ke LI ; Ran LIU ; Xu-Dong ZHAO ; Hua-Lin WANG ; Lan-Qun MAO ; Li-Juan HOU
Progress in Biochemistry and Biophysics 2025;52(8):2087-2102
As China accelerates its efforts in deep space exploration and long-duration space missions, including the operationalization of the Tiangong Space Station and the development of manned lunar missions, safeguarding astronauts’ physiological and cognitive functions under extreme space conditions becomes a pressing scientific imperative. Among the multifactorial stressors of spaceflight, microgravity emerges as a particularly potent disruptor of neurobehavioral homeostasis. Dopamine (DA) plays a central role in regulating behavior under space microgravity by influencing reward processing, motivation, executive function and sensorimotor integration. Changes in gravity disrupt dopaminergic signaling at multiple levels, leading to impairments in motor coordination, cognitive flexibility, and emotional stability. Microgravity exposure induces a cascade of neurobiological changes that challenge dopaminergic stability at multiple levels: from the transcriptional regulation of DA synthesis enzymes and the excitability of DA neurons, to receptor distribution dynamics and the efficiency of downstream signaling pathways. These changes involve downregulation of tyrosine hydroxylase in the substantia nigra, reduced phosphorylation of DA receptors, and alterations in vesicular monoamine transporter expression, all of which compromise synaptic DA availability. Experimental findings from space analog studies and simulated microgravity models suggest that gravitational unloading alters striatal and mesocorticolimbic DA circuitry, resulting in diminished motor coordination, impaired vestibular compensation, and decreased cognitive flexibility. These alterations not only compromise astronauts’ operational performance but also elevate the risk of mood disturbances and motivational deficits during prolonged missions. The review systematically synthesizes current findings across multiple domains: molecular neurobiology, behavioral neuroscience, and gravitational physiology. It highlights that maintaining DA homeostasis is pivotal in preserving neuroplasticity, particularly within brain regions critical to adaptation, such as the basal ganglia, prefrontal cortex, and cerebellum. The paper also discusses the dual-edged nature of DA plasticity: while adaptive remodeling of synapses and receptor sensitivity can serve as compensatory mechanisms under stress, chronic dopaminergic imbalance may lead to maladaptive outcomes, such as cognitive rigidity and motor dysregulation. Furthermore, we propose a conceptual framework that integrates homeostatic neuroregulation with the demands of space environmental adaptation. By drawing from interdisciplinary research, the review underscores the potential of multiple intervention strategies including pharmacological treatment, nutritional support, neural stimulation techniques, and most importantly, structured physical exercise. Recent rodent studies demonstrate that treadmill exercise upregulates DA transporter expression in the dorsal striatum, enhances tyrosine hydroxylase activity, and increases DA release during cognitive tasks, indicating both protective and restorative effects on dopaminergic networks. Thus, exercise is highlighted as a key approach because of its sustained effects on DA production, receptor function, and brain plasticity, making it a strong candidate for developing effective measures to support astronauts in maintaining cognitive and emotional stability during space missions. In conclusion, the paper not only underscores the centrality of DA homeostasis in space neuroscience but also reflects the authors’ broader academic viewpoint: understanding the neurochemical substrates of behavior under microgravity is fundamental to both space health and terrestrial neuroscience. By bridging basic neurobiology with applied space medicine, this work contributes to the emerging field of gravitational neurobiology and provides a foundation for future research into individualized performance optimization in extreme environments.
10.Mechanisms and Molecular Networks of Hypoxia-regulated Tumor Cell Dormancy
Mao ZHAO ; Jin-Qiu FENG ; Ze-Qi GAO ; Ping WANG ; Jia FU
Progress in Biochemistry and Biophysics 2025;52(9):2267-2279
Dormant tumor cells constitute a population of cancer cells that reside in a non-proliferative or low-proliferative state, typically arrested in the G0/G1 phase and exhibiting minimal mitotic activity. These cells are commonly observed across multiple cancer types, including breast, lung, and ovarian cancers, and represent a central cellular component of minimal residual disease (MRD) following surgical resection of the primary tumor. Dormant cells are closely associated with long-term clinical latency and late-stage relapse. Due to their quiescent nature, dormant cells are intrinsically resistant to conventional therapies—such as chemotherapy and radiotherapy—that preferentially target rapidly dividing cells. In addition, they display enhanced anti-apoptotic capacity and immune evasion, rendering them particularly difficult to eradicate. More critically, in response to microenvironmental changes or activation of specific signaling pathways, dormant cells can re-enter the cell cycle and initiate metastatic outgrowth or tumor recurrence. This ability to escape dormancy underscores their clinical threat and positions their effective detection and elimination as a major challenge in contemporary cancer treatment. Hypoxia, a hallmark of the solid tumor microenvironment, has been widely recognized as a potent inducer of tumor cell dormancy. However, the molecular mechanisms by which tumor cells sense and respond to hypoxic stress—initiating the transition into dormancy—remain poorly defined. In particular, the lack of a systems-level understanding of the dynamic and multifactorial regulatory landscape has impeded the identification of actionable targets and constrained the development of effective therapeutic strategies. Accumulating evidence indicates that hypoxia-induced dormancy tumor cells are accompanied by a suite of adaptive phenotypes, including cell cycle arrest, global suppression of protein synthesis, metabolic reprogramming, autophagy activation, resistance to apoptosis, immune evasion, and therapy tolerance. These changes are orchestrated by multiple converging signaling pathways—such as PI3K-AKT-mTOR, Ras-Raf-MEK-ERK, and AMPK—that together constitute a highly dynamic and interconnected regulatory network. While individual pathways have been studied in depth, most investigations remain reductionist and fail to capture the temporal progression and network-level coordination underlying dormancy transitions. Systems biology offers a powerful framework to address this complexity. By integrating high-throughput multi-omics data—such as transcriptomics and proteomics—researchers can reconstruct global regulatory networks encompassing the key signaling axes involved in dormancy regulation. These networks facilitate the identification of core regulatory modules and elucidate functional interactions among key effectors. When combined with dynamic modeling approaches—such as ordinary differential equations—these frameworks enable the simulation of temporal behaviors of critical signaling nodes, including phosphorylated AMPK (p-AMPK), phosphorylated S6 (p-S6), and the p38/ERK activity ratio, providing insights into how their dynamic changes govern transitions between proliferation and dormancy. Beyond mapping trajectories from proliferation to dormancy and from shallow to deep dormancy, such dynamic regulatory models support topological analyses to identify central hubs and molecular switches. Key factors—such as NR2F1, mTORC1, ULK1, HIF-1α, and DYRK1A—have emerged as pivotal nodes within these networks and represent promising therapeutic targets. Constructing an integrative, systems-level regulatory framework—anchored in multi-pathway coordination, omics-layer integration, and dynamic modeling—is thus essential for decoding the architecture and progression of tumor dormancy. Such a framework not only advances mechanistic understanding but also lays the foundation for precision therapies targeting dormant tumor cells during the MRD phase, addressing a critical unmet need in cancer management.

Result Analysis
Print
Save
E-mail