1.Banxia Xiexin Tang Ameliorates Cognitive Dysfunction in Rat Model of Vascular Dementia via AGE/RAGE Pathway
Shuzhi LIANG ; Zhongmin ZHAO ; Suyu HOU ; Dandan LUO ; Yan ZHANG ; Xijian LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):10-21
ObjectiveTo explore the mechanism by which Banxia Xiexin Tang (BXT) regulates the advanced glycation end products (AGE)/receptor for advanced glycation end products (RAGE) signaling pathway to reduce neuroinflammatory responses and ameliorate cognitive dysfunction in the rat model of vascular dementia (VD). MethodsThe components of BXT were detected by ultra performance liquid chromatography-quadrupole -orbitrap-tandem mass spectrometry(UPLC-Q-Orbitrap-MS/MS), and the core components and key action pathways were screened out by network pharmacology and molecular docking. Sixty SPF-grade male SD rats were randomly allocated into the sham and modeling groups by the random number table method. The VD model was replicated by the modified bilateral occlusion of the common carotid arteries (2-VO) method. The successfully modeled rats were randomly allocated into the model, low-, medium-, and high-dose (3.748 5, 7.497, 14.994 g·kg-1) BXT (BXT-L, BXT-M, and BXT-H), and nimodipine (NMP, 0.002 7 g·kg-1) groups according to the random number table method. The rats in the drug intervention groups were administrated with corresponding drugs by gavage, and the sham and model groups received the same amount of normal saline for 14 consecutive days. The Morris water maze, Y-maze, and new object recognition experiments were conducted to evaluate the cognitive dysfunction of rats. Hematoxylin-eosin (HE) staining was used to evaluate the histopathological changes of the hippocampal tissue in rats. The mRNA levels of AGE, RAGE, and phosphorylated nuclear factor-kappa B p65 (p-NF-κB p65) in the hippocampal tissue of rats were determined by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). The expression of related proteins in the AGE/RAGE pathway in the hippocampal tissue of rats was determined by Western blot and immunohistochemistry (IHC). The levels of neurotransmitters and inflammatory mediators in the rat serum were measured by enzyme-linked immunosorbent assay (ELISA). ResultsThe chemical components of BXT were detected by UPLC-Q-Orbitrap-MS/MS. Network pharmacology and molecular docking identified the AGE/RAGE pathway as the key pathway. The results of the water maze, Y maze, and novel object recognition tests showed that compared with the sham group, the model group demonstrated prolonged successful latency and decreases in number of platform crossings, alternation rate, number of entries into the new arm, preference index, and discrimination index (P0.01). Compared with the model group, the BXT-H and BXT-M groups showed shortened successful latency (P0.01) and increases in number of platform crossings (P0.05), alternation rate (P0.01), number of entries into the new arm (P0.05), preference index (P0.01), and discrimination index (P0.01). HE results showed that compared with the sham group, the cells of model rats were loosely and disorderly arranged, and the nuclei were condensed. Compared with the model group, the pathological changes of the hippocampus in the BXT group were mitigated. Real-time PCR results showed that compared with the sham group, the model group presented up-regulated mRNA levels of AGE, RAGE, and p-NF-κB p65 in the hippocampus (P0.01), and compared with the model group, the BXT-H and BXT-M groups showcased down-regulated mRNA levels of AGE, RAGE, and p-NF-κB p65 (P0.01). Western blot results showed that compared with the sham group, the model group presented up-regulated expression of AGE, RAGE, p-NF-κB p65, and tumor necrosis factor-α (TNF-α) (P0.05), and compared with the model group, the BXT-H group presented down-regulated expression of AGE, RAGE, p-NF-κB p65, and TNF-α (P0.05). IHC results showed that compared with the sham group, the model group had increased expression of RAGE (P0.01), and compared with the model group, the BXT-H and BXT-M groups had reduced expression of RAGE (P0.01). ELISA results showed that compared with the sham group, the model group exhibited elevated levels of TNF-α and Interleukin-1β (IL-1β) and declined levels of acetylcholine (ACh) and dopamine (DA) in the serum (P0.01). Compared with the model group, the BXT-L, BXT-M, and BXT-H groups showed lowered levels of TNF-α and IL-1β in the serum (P0.05) and elevated levels of ACh and DA (P0.05). ConclusionBXT may ameliorate cognitive dysfunction in the rat model of VD by down-regulating the AGE/RAGE signaling pathway, reducing neuroinflammatory responses, and regulating neurotransmitter levels.
2.Banxia Xiexin Tang Ameliorates Cognitive Dysfunction in Rat Model of Vascular Dementia via AGE/RAGE Pathway
Shuzhi LIANG ; Zhongmin ZHAO ; Suyu HOU ; Dandan LUO ; Yan ZHANG ; Xijian LIU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):10-21
ObjectiveTo explore the mechanism by which Banxia Xiexin Tang (BXT) regulates the advanced glycation end products (AGE)/receptor for advanced glycation end products (RAGE) signaling pathway to reduce neuroinflammatory responses and ameliorate cognitive dysfunction in the rat model of vascular dementia (VD). MethodsThe components of BXT were detected by ultra performance liquid chromatography-quadrupole -orbitrap-tandem mass spectrometry(UPLC-Q-Orbitrap-MS/MS), and the core components and key action pathways were screened out by network pharmacology and molecular docking. Sixty SPF-grade male SD rats were randomly allocated into the sham and modeling groups by the random number table method. The VD model was replicated by the modified bilateral occlusion of the common carotid arteries (2-VO) method. The successfully modeled rats were randomly allocated into the model, low-, medium-, and high-dose (3.748 5, 7.497, 14.994 g·kg-1) BXT (BXT-L, BXT-M, and BXT-H), and nimodipine (NMP, 0.002 7 g·kg-1) groups according to the random number table method. The rats in the drug intervention groups were administrated with corresponding drugs by gavage, and the sham and model groups received the same amount of normal saline for 14 consecutive days. The Morris water maze, Y-maze, and new object recognition experiments were conducted to evaluate the cognitive dysfunction of rats. Hematoxylin-eosin (HE) staining was used to evaluate the histopathological changes of the hippocampal tissue in rats. The mRNA levels of AGE, RAGE, and phosphorylated nuclear factor-kappa B p65 (p-NF-κB p65) in the hippocampal tissue of rats were determined by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). The expression of related proteins in the AGE/RAGE pathway in the hippocampal tissue of rats was determined by Western blot and immunohistochemistry (IHC). The levels of neurotransmitters and inflammatory mediators in the rat serum were measured by enzyme-linked immunosorbent assay (ELISA). ResultsThe chemical components of BXT were detected by UPLC-Q-Orbitrap-MS/MS. Network pharmacology and molecular docking identified the AGE/RAGE pathway as the key pathway. The results of the water maze, Y maze, and novel object recognition tests showed that compared with the sham group, the model group demonstrated prolonged successful latency and decreases in number of platform crossings, alternation rate, number of entries into the new arm, preference index, and discrimination index (P<0.01). Compared with the model group, the BXT-H and BXT-M groups showed shortened successful latency (P<0.01) and increases in number of platform crossings (P<0.05), alternation rate (P<0.01), number of entries into the new arm (P<0.05), preference index (P<0.01), and discrimination index (P<0.01). HE results showed that compared with the sham group, the cells of model rats were loosely and disorderly arranged, and the nuclei were condensed. Compared with the model group, the pathological changes of the hippocampus in the BXT group were mitigated. Real-time PCR results showed that compared with the sham group, the model group presented up-regulated mRNA levels of AGE, RAGE, and p-NF-κB p65 in the hippocampus (P<0.01), and compared with the model group, the BXT-H and BXT-M groups showcased down-regulated mRNA levels of AGE, RAGE, and p-NF-κB p65 (P<0.01). Western blot results showed that compared with the sham group, the model group presented up-regulated expression of AGE, RAGE, p-NF-κB p65, and tumor necrosis factor-α (TNF-α) (P<0.05), and compared with the model group, the BXT-H group presented down-regulated expression of AGE, RAGE, p-NF-κB p65, and TNF-α (P<0.05). IHC results showed that compared with the sham group, the model group had increased expression of RAGE (P<0.01), and compared with the model group, the BXT-H and BXT-M groups had reduced expression of RAGE (P<0.01). ELISA results showed that compared with the sham group, the model group exhibited elevated levels of TNF-α and Interleukin-1β (IL-1β) and declined levels of acetylcholine (ACh) and dopamine (DA) in the serum (P<0.01). Compared with the model group, the BXT-L, BXT-M, and BXT-H groups showed lowered levels of TNF-α and IL-1β in the serum (P<0.05) and elevated levels of ACh and DA (P<0.05). ConclusionBXT may ameliorate cognitive dysfunction in the rat model of VD by down-regulating the AGE/RAGE signaling pathway, reducing neuroinflammatory responses, and regulating neurotransmitter levels.
3.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
4.Advances in the application of digital technology in orthodontic monitoring
WANG Qi ; LUO Ting ; LU Wei ; ZHAO Tingting ; HE Hong ; HUA Fang
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(1):75-81
During orthodontic treatment, clinical monitoring of patients is a crucial factor in determining treatment success. It aids in timely problem detection and resolution, ensuring adherence to the intended treatment plan. In recent years, digital technology has increasingly permeated orthodontic clinical diagnosis and treatment, facilitating clinical decision-making, treatment planning, and follow-up monitoring. This review summarizes recent advancements in digital technology for monitoring orthodontic tooth movement, related complications, and appliance-wearing compliance. It aims to provide insights for researchers and clinicians to enhance the application of digital technology in orthodontics, improve treatment outcomes, and optimize patient experience. The digitization of diagnostic data and the visualization of dental models make chair-side follow-up monitoring more convenient, accurate, and efficient. At the same time, the emergence of remote monitoring technology allows orthodontists to promptly identify oral health issues in patients and take corresponding measures. Furthermore, the multimodal data fusion method offers valuable insights into the monitoring of the root-alveolar relationship. Artificial intelligence technology has made initial strides in automating the identification of orthodontic tooth movement, associated complications, and patient compliance evaluation. Sensors are effective tools for monitoring patient adherence and providing data-driven support for clinical decision-making. The application of digital technology in orthodontic monitoring holds great promise. However, challenges like technical bottlenecks, ethical considerations, and patient acceptance remain.
5.Follow-up study of left heart valve regurgitation after implantation of left ventricular assist device
Junjiang LIU ; Wenrui MA ; Dingqian LIU ; Yun ZHAO ; Lili DONG ; Zhe LUO ; Kefang GUO ; Chunsheng WANG ; Xiaoning SUN
Chinese Journal of Clinical Medicine 2025;32(1):72-77
Objective To explore the valve regurgitation status of left heart after the implantation of left ventricular assist device (LVAD) and its effect on prognosis of patients with LVAD implantation. Methods A total of 35 patients with cardiomyopathy who underwent magnetic levitation LVAD implantation at Zhongshan Hospital, Fudan University from February 2021 to July 2024 were retrospectively selected. Clinical data during hospitalization were collected, including preoperative basic data and postoperative valve regurgitation status. Telephone follow-ups were conducted to monitor patients’ survival status and transthoracic echocardiography was used to assess left valve function. Kaplan-Meier survival curves and log-rank test were employed to compare the survival rate of patients with different levels of valve regurgitation. Results The 35 patients had a mean age of (53.9±11.1) years, with 85.7% male, and 3 patients (8.6%) died during hospitalization. Preoperatively, 17 patients (48.6%) had moderate or greater mitral regurgitation, while all 35 patients had less than moderate aortic regurgitation. One month postoperatively, thirty patients were followed up, among which 24 patients (80%) had less than moderate mitral regurgitation, including 11 cases with alleviated regurgitation compared to pre-surgery; 6 patients (20%) had moderate or greater mitral regurgitation, including 4 cases with stable regurgitation and 2 cases with progression of regurgitation compared to pre-surgery; 2 patients (6.7%) had progression of aortic regurgitation to moderate or greater. The follow-up time was 1.2 (1.0, 2.1) years, with 1-year survival rate of 91.4% and 3-year survival rate of 71.1%. Survival analysis showed that the 3-year survival rate of patients with moderate or greater mitral regurgitation one month postoperatively was significantly lower than that of patients with less than moderate regurgitation (66.7% vs 83.3%, P=0.046). Conclusions After the implantation of magnetic levitation LVAD, most patients showed improvement in mitral regurgitation, while aortic regurgitation remained unchanged. The degree of mitral regurgitation one month postoperatively is associated with prognosis.
6.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
7.Effect of oxymatrine on expression of stem markers and osteogenic differentiation of periodontal ligament stem cells
Jing LUO ; Min YONG ; Qi CHEN ; Changyi YANG ; Tian ZHAO ; Jing MA ; Donglan MEI ; Jinpeng HU ; Zhaojun YANG ; Yuran WANG ; Bo LIU
Chinese Journal of Tissue Engineering Research 2025;29(19):3992-3999
BACKGROUND:Human periodontal ligament stem cells are potential functional cells for periodontal tissue engineering.However,long-term in vitro culture may lead to reduced stemness and replicative senescence of periodontal ligament stem cells,which may impair the therapeutic effect of human periodontal ligament stem cells. OBJECTIVE:To investigate the effect of oxymatrine on the stemness maintenance and osteogenic differentiation of periodontal ligament stem cells in vitro,and to explore the potential mechanism. METHODS:Periodontal ligament stem cells were isolated from human periodontal ligament tissues by tissue explant enzyme digestion and cultured.The surface markers of mesenchymal cells were identified by flow cytometry.Periodontal ligament stem cells were incubated with 0,2.5,5,and 10 μg/mL oxymatrine.The effect of oxymatrine on the proliferation activity of periodontal ligament stem cells was detected by CCK8 assay.The appropriate drug concentration for subsequent experiments was screened.Western blot assay was used to detect the expression of stem cell non-specific proteins SOX2 and OCT4 in periodontal ligament stem cells.qRT-PCR and western blot assay were used to detect the expression levels of related osteogenic genes and proteins in periodontal ligament stem cells. RESULTS AND CONCLUSION:(1)The results of CCK8 assay showed that 2.5 μg/mL oxymatrine significantly enhanced the proliferative activity of periodontal stem cells,and the subsequent experiment selected 2.5 μg/mL oxymatrine to intervene.(2)Compared with the blank control group,the protein expression level of SOX2,a stem marker of periodontal ligament stem cells in the oxymatrine group did not change significantly(P>0.05),and the expression of OCT4 was significantly up-regulated(P<0.05).(3)Compared with the osteogenic induction group,the osteogenic genes ALP,RUNX2 mRNA expression and their osteogenic associated protein ALP protein expression of periodontal ligament stem cells were significantly down-regulated in the oxymatrine+osteogenic induction group(P<0.05).(4)The oxymatrine up-regulated the expression of stemness markers of periodontal ligament stem cells and inhibited the bone differentiation of periodontal ligament stem cells,and the results of high-throughput sequencing showed that it may be associated with WNT2,WNT16,COMP,and BMP6.
8.Discussing the pathogenesis and treatment of varicocele based on the essence chamber collaterals
Anmin WANG ; Dongyue MA ; Ziwei ZHAO ; Hao WANG ; Hongyuan CHANG ; Dicheng LUO ; Fu WANG
Journal of Beijing University of Traditional Chinese Medicine 2025;48(2):229-234
Varicocele is a common disease of the male reproductive system, and the pampiniform plexus in the spermatic cord manifests abnormal dilatation, extension, and circuity, which is a vasculopathy. In this article, we believe that the relevance of the essence chamber collaterals to the spermatic vein in terms of anatomical morphology and physiological function is high and that when pathogenic qi invades the essence chamber, the qi and collaterals of the essence chamber are out of harmony, the fluid collaterals are impassable, and the blood collaterals are obstrcuted, and the essence chamber collaterals are blockaded with several pathological products, and even intermingled phlegm and blood stasis in the blood collaterals and form vascular clusters, resulting in the formation and development of varicocele. Based on this, this article proposes the core treatment principle of healing, harmonizing, activating, and dredging the collaterals, with the basic treatment method of nourishing qi and harmonizing collaterals, activating blood collaterals, and dredging blood stasis to, respectively treat degree Ⅰ, Ⅱ, and Ⅲ varicocele, aiming to prevent the change of the varicocele, dredge the curvature of the varicocele, and dissipate the knots of the varicocele. The proposal of essence chamber collaterals is of great significance to understanding the common law and pathological aspects of the occurrence and development of essence collateral and vascular lesions from the perspective of integrated traditional Chinese and Western medicine.
9.Efficacy of Fufang Lingjiao Jiangya Pills with Different Proportions of Goat Horn Replacing Antelope Horn on Spontaneous Hypertensive Rats
Tengjian WANG ; Wanlu ZHAO ; Yang YU ; Yan LIU ; Kun CAO ; Zheyuan LIN ; Yue WU ; Lilan LUO ; Weizhi LAI ; Zhaohuan LOU ; Qiaoyan ZHANG ; Quanlong ZHANG ; Luping QIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):68-78
ObjectiveTo investigate the optimal ratio of goat horn replacing antelope horn in Fufang Lingjiao Jiangya pills and the blood pressure-lowering mechanism of this medicine. MethodsThe blood pressure-lowering efficacy of Fufang Lingjiao Jiangya pills with varying proportions of goat horn replacing antelope horn was evaluated on spontaneous hypertensive rats (SHR). In this experiment, 50 SHR rats were randomly grouped as follows: model (n=8), captopril (0.01 g·kg-1) (n=6), low-dose blank Fufang Lingjiao Jiangya pills (0.342 g·kg-1) (n=6), high-dose blank Fufang Lingjiao Jiangya pills (0.684 g·kg-1) (n=6), low-dose antelope horn-containing Fufang Lingjiao Jiangya pills (0.378 g·kg-1) (n=6), high-dose antelope horn-containing Fufang Lingjiao Jiangya pills (0.756 g·kg-1) (n=6), low-dose goat horn-containing Fufang Lingjiao Jiangya pills (0.378 g·kg-1) (n=6), and high-dose goat horn-containing Fufang Lingjiao Jiangya pills (0.756 g·kg-1) (n=6). Additionally, 8 WKY rats were used as the normal group. Drugs were administered by gavage for 4 weeks while an equal volume of distilled water was administered for the normal and model groups. Blood pressure was measured before administration, 3 h post administration, and biweekly thereafter. In the experiment for Fufang Lingjiao Jiangya pills with goat horn replacing antelope horn in different proportions, 48 SHR rats were randomly grouped as follows: model, blank Fufang Lingjiao Jiangya pills (0.684 g·kg-1), antelope horn-containing Fufang Lingjiao Jiangya pills (0.756 g·kg-1), 2× goat horn-containing Fufang Lingjiao Jiangya pills (0.824 g·kg-1), 4× goat horn Fufang Lingjiao Jiangya pills (0.969 g·kg-1), and 6× goat horn Fufang Lingjiao Jiangya pills (1.112 g·kg-1). The normal group included 8 WKY rats, and the normal group and model group received an equal volume of distilled water. The treatment lasted for 2 weeks, and blood pressure was recorded at various time points (pre-administration, 3 h post administration, and on days 4, 7, 10, and 14 of administration). Serum levels of angiotensin-converting enzyme (ACE), angiotensin Ⅱ(Ang Ⅱ), renin, and interleukin-6 (IL-6) were measured by enzyme-linked immunosorbent assay. Histopathological changes in the heart, kidney, and thoracic aorta were observed by hematoxylin-eosin staining. The protein levels of ACE2, angiotensin Ⅱ type 1 receptor (AT1R), and angiotensinogen (AGT) in the kidney tissue were determined by Western blot, while the expression of nuclear factor (NF)-κB p65 and Toll-like receptor 4 (TLR4) in the thoracic aorta tissue was assessed by immunohistochemistry. ResultsCompared with the model group, all treatment groups showed lowered blood pressure (P<0.05, P<0.01), and the 6× goat horn-containing Fufang Lingjiao Jiangya pills group showed consistent blood pressure-lowering effect with the antelope horn-containing Fufang Lingjiao Jiangya pills group. Compared with the normal group, the model group showed elevated serum levels of ACE, Ang Ⅱ, renin, and IL-6, while the elevations were declined in the Fufang Lingjiao Jiangya pills groups (P<0.05, P<0.01). Pathological changes in the heart, kidney, and thoracic aorta were alleviated in all the treatment groups, with the 6× goat horn- and antelope horn-containing Fufang Lingjiao Jiangya pills groups exhibited the best effect. Western blot and immunohistochemistry results showed that all the treatment groups exhibited down-regulated protein levels of AT1R, AGT, NF-κB p65, and TLR4 and up-regulated protein levels of ACE2 (P<0.05, P<0.01) compared with model group, with the 6×goat horn- and antelope horn-containing Fufang Lingjiao Jiangya pills groups showcasing the best effect. ConclusionReplacing antelope horn with 6×goat horn in Fufang Lingjiao Jiangya pills can achieve consistent blood pressure-lowering effect with the original prescription. The prescription may exert the effect by inhibiting the renin-angiotensin-aldosterone system (RAAS) and TLR4/NF-κB signaling pathways.
10.Mass Spectrometry-based Cell Imaging
Peng ZHOU ; Xin WANG ; Qian LUO ; Chao ZHAO
Progress in Biochemistry and Biophysics 2025;52(4):858-868
Cell models can simulate a variety of life states and disease developments, including single cells, two-dimensional (2D) cell cultures, three-dimensional (3D) multicellular spheroids, and organoids. They are essential tools for addressing complex biochemical questions. With continuous advancements in biological and cellular analysis technologies, in vitro cellular models designed to answer scientific questions have evolved rapidly. Early in vitro models primarily relied on 2D systems, which failed to accurately replicate the complex cellular compositions and microenvironmental interactions observed in vivo, let alone support sophisticated investigations into cellular biological functions. Subsequent improvements in cell culture techniques led to the development of 3D culture-based models, such as cellular spheroids. The advent of pluripotent stem cell technology further advanced the development of organoid systems, which closely mimic human organ development. Compared to traditional 2D models, both 3D cellular models and organoids offer significant advantages, including personalization and enhanced physiological relevance, making them particularly suitable for exploring molecular mechanisms of disease progression, discovering novel cellular and biomolecular functions, and conducting related studies. The imaging analysis of common cellular models primarily employs labeling-based methods for in situ imaging of targeted genes, proteins, and small-molecule metabolites, enabling further research on cell types, states, metabolism, and drug efficacy. However, these approaches have drawbacks such as poor labeling specificity and complex experimental procedures. By using cells as experimental models, mass spectrometry technology combined with morphological analysis can reveal quantitative changes and spatial distributions of various biological substances at the spatiotemporal level, including metabolites, proteins, lipids, peptides, drugs, environmental pollutants, and metals. This allows for the investigation of cell-cell interactions, tumor microenvironments, and cellular bioinformational heterogeneity. The application of these cutting-edge imaging technologies generates vast amounts of cellular data, necessitating the development of rapid, efficient, and highly accurate image data algorithms for precise segmentation and identification of single cells, multi-organelle structures, rare cell subpopulations, and complex cellular morphologies. A critical focus lies in creating deep learning models and algorithms that enhance the accuracy of cellular visualization. At the same time, establishing more robust data integration tools is essential not only for analyzing and interpreting outputs but also for effectively uncovering the biological significance of spatially resolved mass spectrometry data. Developing a cell imaging platform with high versatility, operational stability, and specificity to enable data interoperability will significantly enhance its utility in clinical research, thereby advancing investigations into disease molecular mechanisms and supporting precision diagnostics and therapeutics. In contrast to genomic, transcriptomic, and proteomic information, the metabolome can rapidly respond to external stimuli and cellular physiological changes within a short timeframe. This rapid and precise reflection of ongoing cellular state alterations has positioned spatial metabolomics as a pivotal approach for exploring the molecular mechanisms underlying physiological and pathological processes in cells, tissues, and organisms. In this review, we summarize research on cell imaging based on mass spectrometry technologies, including the selection and preparation of cell models, morphological analysis of cell models, spatial omics techniques based on mass spectrometry, mass cytometry, and their applications. We also discuss the current challenges and propose future directions for development in this field.


Result Analysis
Print
Save
E-mail