1.Herbal Textual Research on Zanthoxylum armatum and Zanthoxyli Radix in Famous Classical Formulas
Zhen ZENG ; Yanmeng LIU ; Yihan WANG ; Yapeng WANG ; Erwei HAO ; Chun YAO ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):252-262
This article systematically analyzes the historical evolution of the name, origin, medicinal parts, harvesting and processing, and other aspects of Manjiao and Zanthoxyli Radix by referring to the herbal medicine, medical books, prescription books and other documents of the past dynasties, combined with the relevant modern research materials, in order to provide a basis for the development of famous classical formulas containing the two medicinal materials. According to the herbal textual research, Manjiao was first recorded in Shennong Bencaojing of the Han dynasty with aliases such as Zhujiao, Goujiao and Zhijiao. Throughout history, Manjiao was sourced from the stems and roots of Zanthoxylum armatum in the Rutaceae family, and its leaves and fruits can also be used in medicine. The traditional recorded production area was mainly in Yunzhong(now Tuoketuo region in Inner Mongolia), with mentions in Zhejiang, Hunan, Fujian, Guangdong, Guangxi, Yunnan, Taiwan, and other provinces. Presently, this species is distributed from the south of Shandong, to Hainan, Taiwan, Tibet and other regions. The roots can be harvested year-round, while the fruits are harvested in autumn after maturity. In ancient times, the roots and stems were mostly used for brewing or soaking in wine, whereas nowadays, the roots are often sliced and then used as a raw material in traditional Chinese medicine, and the fruits should be stir-fried before use. Manjiao has a bitter taste and warm property, and was historically used to treat wind-cold dampness, joint pain, limb numbness, and knee pain. Modern researches have summarized its effects as dispelling wind, dispersing cold, promoting circulation, and relieving pain, and it is used for treating rheumatoid arthritis, toothache, bruises, as well as an anthelmintic. Zanthoxyli Radix initially known as Rudi Jinniugen, recorded in Bencao Qiuyuan of the Qing dynasty, with the alternate name of Liangbianzhen. In recent times, it is more commonly referred to as Liangmianzhen, sourced from the dried roots of Z. nitidum of the Rutaceae family, mainly produced in Guangxi and Guangdong. It can be harvested throughout the year, cleaned, sliced, and dried after harvesting. Zanthoxyli Radix is pungent, bitter, warm and slightly toxic, with the functions of promoting blood circulation, removing stasis, relieving pain, dispelling wind, and resolving swelling. Based on the results of herbal textual research, it is clarified that the ancient Manjiao and the modern Zanthoxyli Radix are not the same species. This article corrects the mistaken belief of by previous scholars that Zanthoxyli Radix is the same as ancient Manjiao, and suggests that formulas described as Manjiao should use Z. armatum as the medicinal herb, while those described as Liangmianzhen or Rudi Jinniu should use Z. nitidum. The processing was performed according to the processing requirements prescribed in the formulas, otherwise, the raw products are recommended for use.
2.Herbal Textual Research on Zanthoxylum armatum and Zanthoxyli Radix in Famous Classical Formulas
Zhen ZENG ; Yanmeng LIU ; Yihan WANG ; Yapeng WANG ; Erwei HAO ; Chun YAO ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):252-262
This article systematically analyzes the historical evolution of the name, origin, medicinal parts, harvesting and processing, and other aspects of Manjiao and Zanthoxyli Radix by referring to the herbal medicine, medical books, prescription books and other documents of the past dynasties, combined with the relevant modern research materials, in order to provide a basis for the development of famous classical formulas containing the two medicinal materials. According to the herbal textual research, Manjiao was first recorded in Shennong Bencaojing of the Han dynasty with aliases such as Zhujiao, Goujiao and Zhijiao. Throughout history, Manjiao was sourced from the stems and roots of Zanthoxylum armatum in the Rutaceae family, and its leaves and fruits can also be used in medicine. The traditional recorded production area was mainly in Yunzhong(now Tuoketuo region in Inner Mongolia), with mentions in Zhejiang, Hunan, Fujian, Guangdong, Guangxi, Yunnan, Taiwan, and other provinces. Presently, this species is distributed from the south of Shandong, to Hainan, Taiwan, Tibet and other regions. The roots can be harvested year-round, while the fruits are harvested in autumn after maturity. In ancient times, the roots and stems were mostly used for brewing or soaking in wine, whereas nowadays, the roots are often sliced and then used as a raw material in traditional Chinese medicine, and the fruits should be stir-fried before use. Manjiao has a bitter taste and warm property, and was historically used to treat wind-cold dampness, joint pain, limb numbness, and knee pain. Modern researches have summarized its effects as dispelling wind, dispersing cold, promoting circulation, and relieving pain, and it is used for treating rheumatoid arthritis, toothache, bruises, as well as an anthelmintic. Zanthoxyli Radix initially known as Rudi Jinniugen, recorded in Bencao Qiuyuan of the Qing dynasty, with the alternate name of Liangbianzhen. In recent times, it is more commonly referred to as Liangmianzhen, sourced from the dried roots of Z. nitidum of the Rutaceae family, mainly produced in Guangxi and Guangdong. It can be harvested throughout the year, cleaned, sliced, and dried after harvesting. Zanthoxyli Radix is pungent, bitter, warm and slightly toxic, with the functions of promoting blood circulation, removing stasis, relieving pain, dispelling wind, and resolving swelling. Based on the results of herbal textual research, it is clarified that the ancient Manjiao and the modern Zanthoxyli Radix are not the same species. This article corrects the mistaken belief of by previous scholars that Zanthoxyli Radix is the same as ancient Manjiao, and suggests that formulas described as Manjiao should use Z. armatum as the medicinal herb, while those described as Liangmianzhen or Rudi Jinniu should use Z. nitidum. The processing was performed according to the processing requirements prescribed in the formulas, otherwise, the raw products are recommended for use.
3.Herbal Textual Research on Abri Herba and Abri Mollis Herba in Famous Classical Formulas
Zhen ZENG ; Yanmeng LIU ; Yihan WANG ; Erwei HAO ; Chun YAO ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):193-201
This article systematically analyzes the historical evolution of the name, origin, academic name, medicinal parts, origin, harvesting, processing and other aspects of Abri Herba and Abri Mollis Herba by referring to the herbal medicine, medical books, prescription books and other documents of the past dynasties, combined with the modern literature, so as to provide a basis for the development of famous classical formulas containing this type of medicinal materials. According to the herbal textual research, Abri Herba was first recorded in Lingnan Caiyaolu, with other aliases such as Huangtoucao and Xiye Longlincao. It originates from the dried whole plant of Abrus cantoniensis, a Fabaceae plant, which can be used medicinally except for its fruits. Currently, this species is mainly distributed in Guangdong and Guangxi, and also found in Hunan and Thailand, it can be harvested throughout the year, mainly in spring and autumn. The roots, stems, and leaves can be used for medicinal purposes, but the pods are toxic and need to be removed. After harvesting, impurities and pods are removed, and it is dried and processed for medicinal use. Abri Herba has a sweet and slightly bitter taste, is cool in nature, and is associated with the liver and stomach meridians, it is used for clearing heat and relieving dampness, dispersing blood stasis and relieving pain, and is mainly used to treat jaundice-type hepatitis, stomach pain, rheumatic bone pain, contusion and ecchymosis pain, and mastitis. Abri Mollis Herba was first recorded in the 1982 edition of Zhongyaozhi as another origin for Abri Herba, and was singled out in some monographs such as Xinhua Bencao Gangyao in 1988 for use, while some other monographs use it as a local habitual products or confused products of Abri Herba with aliases such as Daye Jigucao, Qingtingteng, and Maoxiangsi. It comes from the dried whole herb of A. mollis without pods, and is mainly produced in Guangxi and Guangdong, and occasionally found in Hong Kong, Hainan and Fujian. The collection and processing are similar to Abri Herba, after harvesting, impurities and pods are removed, and it is dried and cut for medicinal use. Abri Mollis Herba has a sweet and light taste, is cool in nature, and is associated with the liver and stomach meridians, with the efficacy of clearing heat and detoxifying, and promoting dampness, it is mainly used to treat infectious hepatitis, mastitis, furuncles, burns and scalds, and pediatric malnutrition. Based on the research, A. mollis was first recorded to be used as a medicine in the same origin as A. cantoniensis, and as plants of the same genus, have similar morphological characteristics, and their medicinal parts, collection and processing, properties and flavors, and meridian affiliations are consistent. And in the folk, Abri Mollis Herba is often used as Abri Herba, which has been used for a long time and is now dominated by the cultivation of A. mollis. So it is recommended that the subsequent version of Chinese Pharmacopoeia should include A. mollis in the origin of Abri Herba, and it is also recommended that in famous classical formulas refered to Jiguccao can use A. cantoniensis and A. mollis as the sources of the herb, refered to Mao Jiguccao can use A. mollis as the sources of the herb. Processing is carried out according to the requirements specified in the original formulas, and raw products are recommended to be included in the medicine if there are no requirements.
4.Herbal Textual Research on Abri Herba and Abri Mollis Herba in Famous Classical Formulas
Zhen ZENG ; Yanmeng LIU ; Yihan WANG ; Erwei HAO ; Chun YAO ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):193-201
This article systematically analyzes the historical evolution of the name, origin, academic name, medicinal parts, origin, harvesting, processing and other aspects of Abri Herba and Abri Mollis Herba by referring to the herbal medicine, medical books, prescription books and other documents of the past dynasties, combined with the modern literature, so as to provide a basis for the development of famous classical formulas containing this type of medicinal materials. According to the herbal textual research, Abri Herba was first recorded in Lingnan Caiyaolu, with other aliases such as Huangtoucao and Xiye Longlincao. It originates from the dried whole plant of Abrus cantoniensis, a Fabaceae plant, which can be used medicinally except for its fruits. Currently, this species is mainly distributed in Guangdong and Guangxi, and also found in Hunan and Thailand, it can be harvested throughout the year, mainly in spring and autumn. The roots, stems, and leaves can be used for medicinal purposes, but the pods are toxic and need to be removed. After harvesting, impurities and pods are removed, and it is dried and processed for medicinal use. Abri Herba has a sweet and slightly bitter taste, is cool in nature, and is associated with the liver and stomach meridians, it is used for clearing heat and relieving dampness, dispersing blood stasis and relieving pain, and is mainly used to treat jaundice-type hepatitis, stomach pain, rheumatic bone pain, contusion and ecchymosis pain, and mastitis. Abri Mollis Herba was first recorded in the 1982 edition of Zhongyaozhi as another origin for Abri Herba, and was singled out in some monographs such as Xinhua Bencao Gangyao in 1988 for use, while some other monographs use it as a local habitual products or confused products of Abri Herba with aliases such as Daye Jigucao, Qingtingteng, and Maoxiangsi. It comes from the dried whole herb of A. mollis without pods, and is mainly produced in Guangxi and Guangdong, and occasionally found in Hong Kong, Hainan and Fujian. The collection and processing are similar to Abri Herba, after harvesting, impurities and pods are removed, and it is dried and cut for medicinal use. Abri Mollis Herba has a sweet and light taste, is cool in nature, and is associated with the liver and stomach meridians, with the efficacy of clearing heat and detoxifying, and promoting dampness, it is mainly used to treat infectious hepatitis, mastitis, furuncles, burns and scalds, and pediatric malnutrition. Based on the research, A. mollis was first recorded to be used as a medicine in the same origin as A. cantoniensis, and as plants of the same genus, have similar morphological characteristics, and their medicinal parts, collection and processing, properties and flavors, and meridian affiliations are consistent. And in the folk, Abri Mollis Herba is often used as Abri Herba, which has been used for a long time and is now dominated by the cultivation of A. mollis. So it is recommended that the subsequent version of Chinese Pharmacopoeia should include A. mollis in the origin of Abri Herba, and it is also recommended that in famous classical formulas refered to Jiguccao can use A. cantoniensis and A. mollis as the sources of the herb, refered to Mao Jiguccao can use A. mollis as the sources of the herb. Processing is carried out according to the requirements specified in the original formulas, and raw products are recommended to be included in the medicine if there are no requirements.
5.Herbal Textual Research on Chrysanthemum indicum in Famous Classical Formulas
Jing WANG ; Zhen ZENG ; Yanmeng LIU ; Yihan WANG ; Qing MA ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):190-199
This article systematically analyzes the historical evolution of the name, origin, medicinal parts, harvesting, processing and others of Chrysanthemi Indici by referring to the herbal medicine, medical books, prescription books and other documents of the past dynasties, combined with the relevant modern research materials, in order to provide a basis for the development of famous classical formulas containing this medicinal herb. According to the research, Chrysanthemi Indici was first recorded under the name Kuyi in Bencao Jingjizhu, with aliases such as Yeshanju, Huangjuzai and Lubianju. The botanical source of Chrysanthemi Indici throughout history was Chrysanthemum indicum of the Asteraceae family. It is now distributed in most areas of China, and since the Qing dynasty, the product from Suichang, Zhejiang has been highly regarded. The whole plant can be used as medicine. According to the natural growth laws, the roots were collected in the first lunar month, leaves in the third, stems in the fifth, flowers in the ninth, and fruits in the eleventh, all of which were dried in the shade. In modern times, Chrysanthemi Indici is harvested during their initial blooming in autumn and winter. Since Bencao Gangmu listed Chrysanthemi Indici as a single medicinal material and clarified that all parts have medicinal value, ancient herbal texts began to record the independent medicinal use of Chrysanthemi Indici Flos, and the use of flowers as medicine has become mainstream. In modern times, the quality of Chrysanthemi Indici Flos is summarized to be best when they are dry, yellow, complete, and fragrant. Because Chrysanthemi Indici has a bitter and pungent taste, and is warm, it can eliminate and disperse, often using the power of alcohol to reach and ascend, and is commonly used to treat carbuncles, boils, and scrofula, with consistent properties and effects throughout ancient and modern times. Based on the research results, it is suggested that Chrysanthemi Indici involved in the formulas can be used as C. indicum, which can be used according to the medicinal parts labeled in the original formulas and the requirements of processing, while those without clear medicinal parts and requirements of processing should be used as the whole plant of the dried raw products.
6.Potential utility of albumin-bilirubin and body mass index-based logistic model to predict survival outcome in non-small cell lung cancer with liver metastasis treated with immune checkpoint inhibitors.
Lianxi SONG ; Qinqin XU ; Ting ZHONG ; Wenhuan GUO ; Shaoding LIN ; Wenjuan JIANG ; Zhan WANG ; Li DENG ; Zhe HUANG ; Haoyue QIN ; Huan YAN ; Xing ZHANG ; Fan TONG ; Ruiguang ZHANG ; Zhaoyi LIU ; Lin ZHANG ; Xiaorong DONG ; Ting LI ; Chao FANG ; Xue CHEN ; Jun DENG ; Jing WANG ; Nong YANG ; Liang ZENG ; Yongchang ZHANG
Chinese Medical Journal 2025;138(4):478-480
7.Clinical observation of Zebutinib second-line treatment for mantle cell lymphoma
Liujin QIU ; Yongting LAI ; Tao ZHAN ; Wei XIAO ; Qingfang ZENG
China Modern Doctor 2024;62(29):69-72,91
Objective To explore the clinical efficacy of second-line treatment with Zebutinib for mantle cell lymphoma.Methods Totally 80 patients with mantle cell lymphoma admitted to Ganzhou Cancer Hospital from October 2020 to December 2021 were divided into observation group and control group by lottery method,40 cases in each group.The control group received first-line treatment combined Bendamustine for mantle cell lymphoma,while the observation group received second-line treatment combined with Zebutinib on the basis of first-line treatment.The patients were followed up for 2 years.The clinical efficacy,tumor marker levels,immune function,survival cycle and treatment safety of two groups were evaluated and compared.Results The objective remission rate and disease control rate of observation group were higher than those of control group(P<0.05).After treatment,the levels of lactate dehydrogenase,β2-microglobulin and carcinoembryonic antigen of observation group were lower than those of control group(P<0.05).After treatment,the immune function indicators of observation group was better than that of control group(P<0.05).The progression free survival and overall survival of observation group were higher than those of control group(P<0.05).Conclusion Zebutinib second-line treatment for mantle cell lymphoma has a good effect,can reduce tumor marker levels,improve patients immune function,prolong patients survival cycle,and has good treatment safety.
8.Serum hepatitis B virus pregenomic RNA profiles in patients with chronic hepatitis B on long-term antiviral therapy
Jiali PAN ; Hao LUO ; Xiaxia ZHANG ; Yifan HAN ; Hongyu CHEN ; Zhan ZENG ; Xiaoyuan XU
Chinese Journal of Hepatology 2024;32(1):16-21
Objective:To explore the clinical changes in levels of the new clinical marker serum hepatitis B virus (HBV) pregenomic RNA (pgRNA) in patients with chronic hepatitis B (CHB) with long-term antiviral therapy.Methods:100 CHB cases who were initially treated with nucleos(t)ide analogues (NAs) at Peking University First Hospital were included. The levels of alanine aminotransferase (ALT), HBV DNA, hepatitis B e-antigen (HBeAg), and hepatitis B surface antigen (HBsAg) during the follow-up period were measured. The TaqMan-based real-time quantitative PCR method was used to detect serum HBV pgRNA levels. The independent sample t-test and Mann-Whitney U test were used to compare continuous variables between groups, while Pearson's χ2 test and Fisher's exact test were used to compare categorical variables. Results:HBV pgRNA levels decreased significantly in patients who developed virological responses at 48 weeks ( n = 54) during subsequent treatment compared to those who did not ( n = 46). The HBV pgRNA level was lower in HBeAg-positive patients than in HBeAg-negative patients ( P < 0.05 or P < 0.01). Patients with higher HBV DNA and HBeAg-positivity levels at baseline had a higher HBV pgRNA level following antiviral therapy. There was no statistically significant difference in HBV pgRNA levels in patients with different HBV pgRNA levels at baseline after antiviral therapy. There was no correlation between serum HBV pgRNA and HBsAg at baseline, but there was a correlation after long-term antiviral therapy, while there was a weak correlation between HBV pgRNA and HBsAg at the fifth and ninth years of antiviral therapy ( r = 0.262, P = 0.031; r = 0.288, P = 0.008). Conclusion:HBV pgRNA levels were higher with higher HBV activity in CHB patients with long-term antiviral therapy.
9.A real-world study on the features of postpartum hepatitis flares in pregnant women with chronic HBV infection
Zhan ZENG ; Mingfang ZHOU ; Yanjie LIN ; Xiaoyue BI ; Liu YANG ; Wen DENG ; Tingting JIANG ; Leiping HU ; Mengjiao XU ; Lu ZHANG ; Wei YI ; Minghui LI
Chinese Journal of Hepatology 2024;32(2):113-118
Objective:To analyze the clinical features of postpartum hepatitis flares in pregnant women with hepatitis B virus (HBV) infection.Methods:A retrospective study was conducted. Patients who met the enrollment criteria were included. Liver function and HBV virology tests were collected from pregnant women with chronic HBV infection at delivery, 6, 24, 36, and 48 weeks after delivery through the hospital information and test system. Additionally, antiviral therapy types and drug withdrawal times were collected. Statistical analysis was performed on all the resulting data.Results:A total of 533 pregnant women who met the inclusion criteria were included, with all patients aged (29.5±3.7) years old. A total of 408 cases received antiviral drugs during pregnancy to interrupt mother-to-child transmission. There was no significant difference in the levels of alanine aminotransferase (ALT, z ?=?-1.981, P ?=?0.048), aspartate aminotransferase (AST, z ?=?-3.956, P ?0.001), HBV load ( z ?=?-15.292, P ?0.001), and HBeAg ( z ?=?-4.77, P ?0.001) at delivery in patients who received medication and those who did not. All patients ALT, AST, total bilirubin, direct bilirubin, and albumin showed an upward trend within six weeks after delivery. A total of 231 cases developed hepatitis within 48 weeks after delivery. Among them, 173 cases first showed ALT abnormalities within six weeks postpartum. Conclusion:Hepatitis flare incidence peaked six weeks after delivery or six weeks after drug withdrawal in pregnant women with chronic HBV infection.
10.Evaluation of Brain Metabolism and Neuroinflammation in Mice with Alzheimer's Disease Treated by Ketogenic Diet by 18F-FDG and 18F-DPA-714 Micro PET/CT
Yuhao HUANG ; Xinyu ZENG ; Fei CHEN ; Yousheng ZHAN ; Fanhui YANG ; Suping LI
Chinese Journal of Medical Imaging 2024;32(5):431-438
Purpose To investigate whether ketogenic diet(KD)can promote cognition by regulating brain metabolism and neuroinflammation in Alzheimer's disease model mice.Materials and Methods Twenty male APP/PS1 mice were randomly assigned to either a KD group(APP/PS1+KD)or a regular diet group(APP/PS1),with 10 mice in each group.Additionally,10 wild-type C57BL/6 male mice served as the control group.The APP/PS1+KD group was fed with a ketogenic feed,the APP/PS1 group received a regular diet,and the control group was maintained on standard chow for a duration of 4 months.Blood ketone levels of mice were monitored after 4 weeks and 4 months of continuous feeding.Cognitive function was assessed via the morris water maze.18F-FDG and 18F-DPA-714 micro PET/CT were performed to evaluate the effects of KD on glucose metabolism and neuroinflammation across various brain regions in the Alzheimer's disease mice.Following PET/CT imaging,brain tissue samples were collected,and the hippocampal Cal region was selected for paraffin sectioning to detect the expression of glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1 through immunofluorescence analysis.Results In the Morris water maze in the fourth month,compared with the control group,the APP/PS1 group had a significantly longer escape latency on days 3-4(P<0.05 or P<0.01).Compared with the control group,the APP/PS1 group showed a significant decrease in relative 18F-FDG uptake in brain regions such as the striatum,hippocampus,dorsal thalamus,central gray matter,superior colliculus,olfactory bulb,and midbrain(P<0.01,P<0.05).Compared with the APP/PS1 group,the APP/PS1+KD group showed a significant increase in relative 18F-FDG uptake in the hippocampus and dorsal thalamus(P<0.01).Compared with the control group,the APP/PS1 group showed a significant increase in relative uptake of 18F-DPA-714 in brain regions such as the striatum,hippocampus and hypothalamus(P<0.05 or P<0.001).Compared with the APP/PS1 group,the APP/PS1+KD group decreased the relative uptake of 18F-DPA-714 in the hippocampus(P<0.01).Compared with the control group and APP/PS1+KD group,the fluorescence intensity of glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1 protein in the brain(hippocampus)of APP/PS1 group mice was significantly increased(both P<0.01).Conclusion KD has the potential to ameliorate cognitive and behavioral deficits in APP/PS1 mice by enhancing brain metabolism and attenuating neuroinflammation.

Result Analysis
Print
Save
E-mail