1.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
2.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
3.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
4.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
5.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
6.Temporal Unfolding of Racial Ingroup Bias in Neural Responses to Perceived Dynamic Pain in Others.
Chenyu PANG ; Yuqing ZHOU ; Shihui HAN
Neuroscience Bulletin 2024;40(2):157-170
In this study, we investigated how empathic neural responses unfold over time in different empathy networks when viewing same-race and other-race individuals in dynamic painful conditions. We recorded magnetoencephalography signals from Chinese adults when viewing video clips showing a dynamic painful (or non-painful) stimulation to Asian and White models' faces to trigger painful (or neutral) expressions. We found that perceived dynamic pain in Asian models modulated neural activities in the visual cortex at 100 ms-200 ms, in the orbitofrontal and subgenual anterior cingulate cortices at 150 ms-200 ms, in the anterior cingulate cortex around 250 ms-350 ms, and in the temporoparietal junction and middle temporal gyrus around 600 ms after video onset. Perceived dynamic pain in White models modulated activities in the visual, anterior cingulate, and primary sensory cortices after 500 ms. Our findings unraveled earlier dynamic activities in multiple neural circuits in response to same-race (vs other-race) individuals in dynamic painful situations.
Adult
;
Humans
;
Brain Mapping
;
Pain
;
Empathy
;
Racism
;
Gyrus Cinguli/physiology*
;
Magnetic Resonance Imaging
;
Brain/physiology*
7.Development and influential factor analysis of pharmacy outpatient departments in 714 Chinese tertiary healthcare institutions
Long MEI ; Sa LI ; Yuqing ZHANG ; Shuo ZHOU ; Zengwei ZHAO ; Wei ZHANG ; Qunhong SHEN ; Jiancun ZHEN
China Pharmacy 2024;35(4):385-389
OBJECTIVE To investigate the basic situation of developing pharmacy outpatient departments in Chinese tertiary medical institutions and analyze the influencing factors. METHODS The research targeted the pharmacy outpatient department managers of hospitals and conducted a survey through Sojump in March 2023. Various independent variables were selected from the hospital’s own characteristics, the management of the pharmacy outpatient departments, and the construction of the pharmacist team for Logistic and linear regression analysis, with the aim of separately analyzing the factors influencing the establishment of pharmacy outpatient departments and the factors affecting the total number of patients served by these departments throughout the year 2022. RESULTS & CONCLUSIONS A total of 1 304 medical institutions of different levels nationwide participated in this survey, with 714 tertiary hospitals. Among the tertiary hospitals, 377 (52.80%) had established pharmacy outpatient departments, including 321 grade-A tertiary hospitals, 48 grade-B tertiary hospitals and 8 other tertiary hospitals. The 377 tertiary hospitals collectively operated 1 739 pharmacy outpatient departments, covering 19 specialized fields, with the highest proportion found in the cardiovascular field (including anticoagulation) at 16.45%. Tertiary hospitals in North China, Central China, East China and South China regions had more pharmacy outpatient departments. The establishment of pharmacy outpatient departments was found to be influenced by tertiary grade-B status (P=0.010) and the annual outpatient volume of the hospital (P=0.008), although the impact was relatively small. The factors influencing the number of patients served by pharmacy outpatient departments were the annual outpatient volume of the hospital (P=0.042) and the number of pharmacists engaged in clinical pharmacy work (P=0.004). The proportion of tertiary hospitals in China that have established pharmacy outpatient departments is insufficient. It is necessary to further accelerate the construction of pharmacy outpatient departments and appropriately expand the talent pool of hospital pharmacy teams based on the needs of pharmacy outpatient departments and patients, in order to meet the requirements of medical practice and patient care.
8.Mechanism of Aurantii Fructus and Its Active Components in Regulating Gastrointestinal Motility: A Review
Junbao YU ; Jiayuan ZHU ; Wenya MEI ; Jiawei HE ; Yuqing LONG ; Zhihui WANG ; Xiaorong LIU ; Xiangdan LIU ; Ribao ZHOU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(10):290-298
Gastrointestinal motility disorder is an important cause of digestive system diseases. Patients often suffer from nausea, vomiting, gastric retention, gastroparesis, constipation, and many other symptoms, and their quality of life is seriously reduced. Prokinetic agents are routinely used in clinical practice, but their long-term use is prone to problems such as reduced efficacy and increased adverse reactions. Since the incidence of gastrointestinal diseases has continued to rise globally in recent years, there is an urgent need for clinical development of safe and effective treatment strategies. Aurantii Fructus, a traditional Chinese medicine, has the effect of smoothing Qi and eliminating distention, and it has been used to treat gastrointestinal diseases for thousands of years. In modern clinical practice, it is mainly used for the treatment and auxiliary treatment of various gastrointestinal diseases such as functional dyspepsia, functional constipation, and irritable bowel syndrome. The efficacy is remarkable, and no adverse reactions have been reported at conventional doses. Therefore, it can greatly improve the symptoms of patients with gastrointestinal diseases and improve their quality of life. Modern research has revealed that there are many active components in Aurantii Fructus, among which flavonoids have the highest content and the most types. Flavonoids are the main active components in Aurantii Fructus to regulate gastrointestinal motility. Aurantii Fructus and its active components can affect gastrointestinal hormones, neural pathways, Cajal mesenchymal cells, and other multiple mechanisms. They can adjust gastrointestinal motility and correct gastrointestinal motility disorders, showing potential application value in the treatment of gastrointestinal motility disorders. However, a comprehensive analysis of Aurantii Fructus in this aspect is still lacking. This study summarized the pharmacological activities of active components of Aurantii Fructus extract and its flavonoids, volatile oils, alkaloids, and coumarin on the regulation of gastrointestinal motility and explored the latest research progress on its mechanism. Finally, the adverse reactions of Aurantii Fructus were summarized. It aims to provide a scientific basis for the research and clinical application of Aurantii Fructus and its active components in the regulation of gastrointestinal motility.
9.Dosimetric study of isolated neuronal networks under 2.6 GHz radiofrequency exposure
Yuqing WANG ; Xuelong ZHAO ; Qi LIU ; Guofu DONG ; Yu WEI ; Ni CHEN ; Xiaoman LIU ; Changzhen WANG ; Hongmei ZHOU
Military Medical Sciences 2024;48(2):95-100
Objective To evaluate the characteristics of dose distribution of neuronal networks in vitro on microelectrode arrays(MEAs)under 2.6 GHz radiofrequency(RF)exposure.Methods The MEAs were coupled with a real-time RF exposure setup,and electromagnetic simulation software was used to calculate the RF dose absorbed in cultured neuronal networks.A fiber-optic temperature probe was used for experimental validation and monitoring of the cell temperature during RF exposure.The MEAs were used to record the electrical activity of neurons.Results For an input power of 1 W,a specific absorption rate(SAR)level of(15.51±2.48)W/kg was calculated,and the variability of the SAR distribution was 16%.In our experimental system,the temperature elevation of neurons was up to 0.15℃for an SAR of 4 W/kg RF exposure.Conclusion The exposure device can provide high SAR efficiency and uniformity in the 2.6 GHz band,which is suitable for studying the real-time effects of RF fields on the electrical activity of neuronal networks in the 5G network band.
10.Experience and learning curve of single-line suspension suction rod-assisted hybrid cavity-building thyroid surgery via the oral vestibular approach
Hongyu CHEN ; Yiyi ZHOU ; Shuai LIN ; Bin XIONG ; Shaoli XIE ; Fang CHEN ; Yuqing KANG ; Qi LYU ; Xiaobo ZHAO
Chinese Journal of Endocrine Surgery 2024;18(1):26-30
Objective:To explore the experience and learning curve of single-line suspension suction rod-assisted hybrid cavity-building thyroid surgery via the oral vestibular approach.Methods:Clinical data of 138 patients undergoing single-line suspension suction rod-assisted hybrid cavity-building thyroid surgery via oral vestibular approach from Sep. 2019 to Dec. 2021 in the Department of Thyroid and Breast Surgery of Affiliated Hospital of North Sichuan Medical College were retrospectively analyzed. The cumulative sum (CUSUM) method and best-fit curve analysis were used to compare the differences in each index such as operative time, intraoperative bleeding, number of lymph nodes cleared in the central region and postoperative related complications at various stages of the learning curve.Results:All 138 patients underwent single-line suspension rod-assisted hybrid cavity-building thyroid surgery via the oral vestibular approach, and one patient was converted to open surgery due to large intraoperative bleeding in the mass. There were 14 males and 124 females, mean age (36.07±8.49) years (20-55 years), thyroid tumor size (7.74±6.49) mm (2.4-50mm), 5 cases underwent Subtotal thyroidectomy, 129 cases underwent Unilateral lobectomy + lymph node dissection in the middle region, and 4 cases total thyroidectomy + central zone lymph node dissection. The number of surgical cases corresponding to the apex of the CUSUM learning curve was 45, and the learning curve was divided into two stages: the learning improvement stage (1-45 cases) and the mastery stage (46-138 cases). The operative time, intraoperative bleeding, postoperative hospital stay, and chin numbness were all lower in the proficiency period than in the learning and training period ( P<0.05), and the number of lymph nodes cleared in the central region was larger than that in the learning and improvement stage ( P<0.05), while the differences in other indexes between the two stages were not statistically significant ( P>0.05) . Conclusion:The single-line suspension suction rod-assisted hybrid cavity-building thyroid surgery via the oral vestibular approach has clinical application value and is worth promoting, and the number of surgical cases to be accumulated to master this technique is 45.

Result Analysis
Print
Save
E-mail