1.Interpretation of "Cancer statistics, 2025": A comparative study on cancer epidemiological characteristics and long-term trends between China and the United States
Ruifeng XU ; Hongrui WANG ; Yun CHE ; Na REN ; Guochao ZHANG ; Liang ZHAO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(04):442-452
		                        		
		                        			
		                        			In 2025, the American Cancer Society published "Cancer statistics, 2025", which projected cancer data for the upcoming year based on incidence data collected by central cancer registries (through 2021) and mortality data obtained from the National Center for Health Statistics (through 2022). Similarly, the National Cancer Center of China released "Cancer incidence and mortality in China, 2022" in December 2024, analyzing data from 22 cancer registries across the country. This study provides a comparative analysis of cancer incidence and mortality trends in China and the United States during the same period, with a focus on sex- and age-specific distributions and long-term changes in cancer patterns. Long-term trends indicate that lung and liver cancer mortality rates in China have declined, primarily due to tobacco control measures and hepatitis B vaccination programs. However, the burden of gastric and esophageal cancers remains substantial. In the United States, mortality rates for colorectal and lung cancers have continued to decline, largely attributed to widespread screening programs and advances in immunotherapy. As economic growth and social development, China’s cancer profile is gradually shifting towards patterns observed in countries with high human development index. However, the prevention and control of upper gastrointestinal cancers remains a critical public health challenge that requires further attention.
		                        		
		                        		
		                        		
		                        	
2.Communication Between Mitochondria and Nucleus With Retrograde Signals
Wen-Long ZHANG ; Lei QUAN ; Yun-Gang ZHAO
Progress in Biochemistry and Biophysics 2025;52(7):1687-1707
		                        		
		                        			
		                        			Mitochondria, the primary energy-producing organelles of the cell, also serve as signaling hubs and participate in diverse physiological and pathological processes, including apoptosis, inflammation, oxidative stress, neurodegeneration, and tumorigenesis. As semi-autonomous organelles, mitochondrial functionality relies on nuclear support, with mitochondrial biogenesis and homeostasis being stringently regulated by the nuclear genome. This interdependency forms a bidirectional signaling network that coordinates cellular energy metabolism, gene expression, and functional states. During mitochondrial damage or dysfunction, retrograde signals are transmitted to the nucleus, activating adaptive transcriptional programs that modulate nuclear transcription factors, reshape nuclear gene expression, and reprogram cellular metabolism. This mitochondrion-to-nucleus communication, termed “mitochondrial retrograde signaling”, fundamentally represents a mitochondrial “request” to the nucleus to maintain organellar health, rooted in the semi-autonomous nature of mitochondria. Despite possessing their own genome, the “fragmented” mitochondrial genome necessitates reliance on nuclear regulation. This genomic incompleteness enables mitochondria to sense and respond to cellular and environmental stressors, generating signals that modulate the functions of other organelles, including the nucleus. Evolutionary transfer of mitochondrial genes to the nuclear genome has established mitochondrial control over nuclear activities via retrograde communication. When mitochondrial dysfunction or environmental stress compromises cellular demands, mitochondria issue retrograde signals to solicit nuclear support. Studies demonstrate that mitochondrial retrograde signaling pathways operate in pathological contexts such as oxidative stress, electron transport chain (ETC) impairment, apoptosis, autophagy, vascular tension, and inflammatory responses. Mitochondria-related diseases exhibit marked heterogeneity but invariably result in energy deficits, preferentially affecting high-energy-demand tissues like muscles and the nervous system. Consequently, mitochondrial dysfunction underlies myopathies, neurodegenerative disorders, metabolic diseases, and malignancies. Dysregulated retrograde signaling triggers proliferative and metabolic reprogramming, driving pathological cascades. Mitochondrial retrograde signaling critically influences tumorigenesis and progression. Tumor cells with mitochondrial dysfunction exhibit compensatory upregulation of mitochondrial biogenesis, excessive superoxide production, and ETC overload, collectively promoting metastatic tumor development. Recent studies reveal that mitochondrial retrograde signaling—mediated by altered metabolite levels or stress signals—induces epigenetic modifications and is intricately linked to tumor initiation, malignant progression, and therapeutic resistance. For instance, mitochondrial dysfunction promotes oncogenesis through mechanisms such as epigenetic dysregulation, accumulation of mitochondrial metabolic intermediates, and mitochondrial DNA (mtDNA) release, which activates the cytosolic cGAS-STING signaling pathway. In normal cells, miR-663 mediates mitochondrion-to-nucleus retrograde signaling under reactive oxygen species (ROS) regulation. Mitochondria modulate miR-663 promoter methylation, which governs the expression and supercomplex stability of nuclear-encoded oxidative phosphorylation (OXPHOS) subunits and assembly factors. However, dysfunctional mitochondria induce oxidative stress, elevate methyltransferase activity, and cause miR-663 promoter hypermethylation, suppressing miR-663 expression. Mitochondrial dysfunction also triggers retrograde signaling in primary mitochondrial diseases and contributes to neurodegenerative disorders such as Parkinson’s disease (PD) and Alzheimer’s disease (AD). Current therapeutic strategies targeting mitochondria in neurological diseases focus on 5 main approaches: alleviating oxidative stress, inhibiting mitochondrial fission, enhancing mitochondrial biogenesis, mitochondrial protection, and insulin sensitization. In AD patients, mitochondrial morphological abnormalities and enzymatic defects, such as reduced pyruvate dehydrogenase and α-ketoglutarate dehydrogenase activity, are observed. Platelets and brains of AD patients exhibit diminished cytochrome c oxidase (COX) activity, correlating with mitochondrial dysfunction. To model AD-associated mitochondrial pathology, researchers employ cybrid technology, transferring mtDNA from AD patients into enucleated cells. These cybrids recapitulate AD-related mitochondrial phenotypes, including reduced COX activity, elevated ROS production, oxidative stress markers, disrupted calcium homeostasis, activated stress signaling pathways, diminished mitochondrial membrane potential, apoptotic pathway activation, and increased Aβ42 levels. Furthermore, studies indicate that Aβ aggregates in AD and α‑synuclein aggregates in PD trigger mtDNA release from damaged microglial mitochondria, activating the cGAS-STING pathway. This induces a reactive microglial transcriptional state, exacerbating neurodegeneration and cognitive decline. Targeting the cGAS-STING pathway may yield novel therapeutics for neurodegenerative diseases like AD, though translation from bench to bedside remains challenging. Such research not only deepens our understanding of disease mechanisms but also informs future therapeutic strategies. Investigating the triggers, core molecular pathways, and regulatory networks of mitochondrial retrograde signaling advances our comprehension of intracellular communication and unveils novel pathogenic mechanisms underlying malignancies, neurodegenerative diseases, and type 2 diabetes mellitus. This review summarizes established mitochondrial-nuclear retrograde signaling axes, their roles in interorganellar crosstalk, and pathological consequences of dysregulated communication. Targeted modulation of key molecules and proteins within these signaling networks may provide innovative therapeutic avenues for these diseases. 
		                        		
		                        		
		                        		
		                        	
3.PES1 Repression Triggers Ribosomal Biogenesis Impairment and Cellular Senescence Through p53 Pathway Activation
Chang-Jian ZHANG ; Yu-Fang LI ; Feng-Yun WU ; Rui JIN ; Chang NIU ; Qi-Nong YE ; Long CHENG
Progress in Biochemistry and Biophysics 2025;52(7):1853-1865
		                        		
		                        			
		                        			ObjectiveThe nucleolar protein PES1 (Pescadillo homolog 1) plays critical roles in ribosome biogenesis and cell cycle regulation, yet its involvement in cellular senescence remains poorly understood. This study aimed to comprehensively investigate the functional consequences of PES1 suppression in cellular senescence and elucidate the molecular mechanisms underlying its regulatory role. MethodsInitially, we assessed PES1 expression patterns in two distinct senescence models: replicative senescent mouse embryonic fibroblasts (MEFs) and doxorubicin-induced senescent human hepatocellular carcinoma HepG2 cells. Subsequently, PES1 expression was specifically downregulated using siRNA-mediated knockdown in these cell lines as well as additional relevant cell types. Cellular proliferation and senescence were assessed by EdU incorporation and SA-β-gal staining assays, respectively. The expression of senescence-associated proteins (p53, p21, and Rb) and SASP factors (IL-6, IL-1β, and IL-8) were analyzed by Western blot or qPCR. Furthermore, Northern blot and immunofluorescence were employed to evaluate pre-rRNA processing and nucleolar morphology. ResultsPES1 expression was significantly downregulated in senescent MEFs and HepG2 cells. PES1 knockdown resulted in decreased EdU-positive cells and increased SA‑β‑gal-positive cells, indicating proliferation inhibition and senescence induction. Mechanistically, PES1 suppression activated the p53-p21 pathway without affecting Rb expression, while upregulating IL-6, IL-1β, and IL-8 production. Notably, PES1 depletion impaired pre-rRNA maturation and induced nucleolar stress, as evidenced by aberrant nucleolar morphology. ConclusionOur findings demonstrate that PES1 deficiency triggers nucleolar stress and promotes p53-dependent (but Rb-independent) cellular senescence, highlighting its crucial role in maintaining nucleolar homeostasis and regulating senescence-associated pathways. 
		                        		
		                        		
		                        		
		                        	
4.Spatiotemporal characteristics of diesel exhaust particle pollution in confined space and impacts of ventilation and airflow: A laboratory simulation study
Zheyu HUANG ; Jian ZHANG ; Lihua HE ; Wenchu HUANG ; Zihui LI ; Bilige HASEN ; Hongbo WANG ; Yun WANG
Journal of Environmental and Occupational Medicine 2025;42(7):814-821
		                        		
		                        			
		                        			Background Diesel engines are widely used in transportation, agriculture, construction, industry, and other fields. Diesel exhaust, classified as a Group 1 carcinogen, emits particles (DEP) that can penetrate deep into the respiratory tract, posing significant health risks. DEP pollution is particularly severe in confined environments, necessitating effective control measures. Objective Under laboratory simulation conditions, to explore the spatiotemporal distribution characteristics of the mass and number concentrations of DEP as it diffuses indoors and to reveal the effects of ventilation and additional airflow on indoor DEP pollution levels. Methods A diesel engine was placed in a laboratory (length 3.39 m × width 2.85 m × height 2.4 m) with its exhaust emitted from east to west. An air purifier was installed 1 m south of the engine. Eight measurement points (1 m horizontal distance from the exhaust outlet, height: 1 m/1.5 m) were setup to monitor DEP concentrations using portable laser particle sizers. The effects of engine power (4.05 kW vs. 5.15 kW), ventilation (maximum airflow: 600 m3·h−1), additional airflow intensity (low and high), and direction (forward/reverse) on DEP pollution were analyzed. DEP levels of 5 diesel vehicle models were also compared. Results The mass and number concentrations of DEP indoors increased immediately after the diesel engine started. The peak mass concentration time at the eastern measurement point (−1, 0) m opposite to the exhaust direction (17.70 min) was significantly longer than that at the western (1, 0) m (16.20 min), southern (0, -1) m (14.45 min), and northern (0, 1) m (12.70 min) points (P<0.05), with no significant differences between the other points (western, southern, and northern) (P>0.05). The northern point (0, 1) m exhibited the highest DEP mass and number concentration peaks (174.62 μg·m−3, 
		                        		
		                        	
5.Design and development of the full-process regulatory information system for radiological health technical services in Gansu Province, China
Yun WANG ; Xiuping LI ; Hanyu ZHANG ; Jie WANG
Chinese Journal of Radiological Health 2025;34(3):414-418
		                        		
		                        			
		                        			Objective To address the current blind spots in quality control and the risk of data distortion in radiological health technical service institutions, overcome the limitations of low efficiency and insufficient anomaly identification in manual verification, establish an automatic anomaly early warning mechanism based on AI algorithms, provide accurate clues for health supervision and law enforcement, and significantly enhance the efficiency of industry supervision. Methods On-site inspection data were collected via photographic imaging. Advanced image processing and object detection algorithms were employed to automatically extract and analyze key information from the images. Through data analysis, the system was used to calculate and assess the inspection results. A dynamic early warning engine was developed to automatically trigger alerts upon detection of deviations from standard thresholds or regulatory violations in radiological health technical services. These alerts were delivered through a regulatory information system. Results Following AI model training, the accuracy of the image processing and object detection algorithms reached 99% and the early warning accuracy reached 93%. Compared with the traditional supervision mode, the efficiency of anomaly detection was improved and the average response time was shortened. Conclusion The full-process supervision information system constructed in this study has realized the triple mechanism of pre-event standardization, in-event monitoring, and post-event traceability for radiological health technical services. In particular, the system has established a four-level quality control chain of “institutional self-inspection, intelligent recheck, expert judgment, and administrative action”, providing a technological innovation path for ensuring the radiation protection and safety of medical staff, patients, and the public.
		                        		
		                        		
		                        		
		                        	
6.XK gene deletion leading to McLeod syndrome and high-frequency antigen antibodies: identification and transfusion strategy
Jing LI ; Kewen YAO ; Yun DU ; Haiyan HU ; Hongli ZHANG
Chinese Journal of Blood Transfusion 2025;38(8):1107-1112
		                        		
		                        			
		                        			Objective: To investigate the hematological characteristics of the rare McLeod phenotype associated with X-linked chronic granulomatous disease, KEL and XK gene analysis, identification of unexpected antibodies, serological characteristics of high-frequency antigen antibodies, and transfusion strategies. Methods: Serological methods were employed to determine the ABO, Rh, and other blood group system antigen phenotypes of the child, along with screening and identification of unexpected antibodies. The titers of high-frequency antigen antibodies were measured using tube antihuman globulin and microcolumn gel card techniques. Kell blood group typing was performed using serological and genotyping methods, while XK gene sequencing was conducted via next-generation sequencing. Peripheral blood smears from the child's mother were examined for erythrocyte morphology. Results: The child's serological results were as follows: blood group O, ccDEE, MM, Le(a-b+), JK(a+b+), Fy(a+b-), and Kell phenotype K-k+, Kp(a-b+). Plasma analysis revealed alloantibodies anti-C、e, as well as a high-frequency antigen antibody anti-KL, with titers of 512 (tube method) and 2 048 (microcolumn gel method). Genotyping results showed KEL genotype K-k+, Kp(a-b+), Js(a-b+), while XK gene NGS identified a hemizygous deletion of exons 1-3 (XK
       N. 01), consistent with XK: -1 or Kx-(McLeod). The mother's peripheral blood smear exhibited prominent acanthocytes. Conclusion: The hematological features of this rare McLeod phenotype with X-CGD include weakened Kell antigen expression and a complete exon deletion in the XK gene. Early clinical attention should be given to the symptoms and laboratory diagnosis of X-linked chronic granulomatous disease in pediatric patients. XK genotyping for McLeod phenotype should be prioritized to guide cautious transfusion strategies, preventing life-threatening complications due to incompatible blood products.
    
		                        		
		                        		
		                        		
		                        	
7.The clinical value of artificial intelligence quantitative parameters in distinguishing pathological grades of stage Ⅰ invasive pulmonary adenocarcinoma
Yun LIANG ; Mengmeng REN ; Delong HUANG ; Jingyan DIAO ; Xuri MU ; Guowei ZHANG ; Shuliang LIU ; Xiuqu FEI ; Dongmei DI ; Ning XIE
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):598-607
		                        		
		                        			
		                        			Objective  To explore the clinical value of artificial intelligence (AI) quantitative parameters in distinguishing pathological grades of stageⅠ invasive adenocarcinoma (IAC). Methods  Clinical data of patients with clinical stageⅠ IAC admitted to Yantaishan Hospital Affiliated to Binzhou Medical University from October 2018 to May 2023 were retrospectively analyzed. Based on the 2021 WHO pathological grading criteria for lung adenocarcinoma, IAC was divided into gradeⅠ, grade Ⅱ, and grade Ⅲ. The differences in parameters among the groups were compared, and logistic regression analysis was used to evaluate the predictive efficacy of AI quantitative parameters for grade Ⅲ IAC patients. Parameters were screened using least absolute shrinkage and selection operator (LASSO) regression analysis. Three machine learning models were constructed based on these parameters to predict grade Ⅲ IAC and were internally validated to assess their efficacy. Nomograms were used for visualization. Results A total of 261 IAC patients were included, including 101 males and 160 females, with an average age of 27-88 (61.96±9.17) years. Six patients had dual primary lesions, and different lesions from the same patient were analyzed as independent samples. There were 48 patients of gradeⅠ IAC, 89 patients of grade Ⅱ IAC, and 130 patients of grade Ⅲ IAC. There were statitical differences in the AI quantitive parameters such as consolidation/tumor ratio (CTR), ect among the three goups. (P<0.05). Univariate analysis showed that the differences in all variables except age were statistically significant (P<0.05) between the group gradeⅠ+grade Ⅱand the group grade Ⅲ . Multivariate analysis suggested that CTR and CT standard deviation were independent risk factors for identifying grade Ⅲ IAC, and the two were negatively correlated. Grade Ⅲ IAC exhibited advanced TNM staging, more pathological high-risk factors, higher lymph node metastasis rate, and higher proportion of advanced structure. CTR was positively correlated with the proportion of advanced structures in all patients. This correlation was also observed in grade Ⅲ but not in gradeⅠand grade ⅡIAC. CTR and CT median value were selected by using LASSO regression. Logistic regression, random forest, and XGBoost models were constructed and validated, among which, the XGBoost model demonstrated the best predictive performance. Conclusion  Cautious consideration should be given to grade Ⅲ IAC when CTR is higher than 39.48% and CT standard deviation is less than 122.75 HU. The XGBoost model based on combined CTR and CT median value has good predictive efficacy for grade Ⅲ IAC, aiding clinicians in making personalized clinical decisions.
		                        		
		                        		
		                        		
		                        	
8.Key Information Research and Ancient and Modern Application Analysis of Classic Prescription Houpo Sanwutang
Wenli SHI ; Qing TANG ; Huimin CHEN ; Jialei CAO ; Bingqi WEI ; Lan LIU ; Keke LIU ; Yun ZHANG ; Yujie CHANG ; Yihan LI ; Jingwen LI ; Bingxiang MA ; Lvyuan LIANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):214-221
		                        		
		                        			
		                        			Houpo Sanwutang, included in the Catalogue of Ancient Classical Prescriptions (Second Batch), was first recorded in the Synopsis of Golden Chamber written by ZHANG Zhongjing from the Eastern Han dynasty and was modified by successive generations of medical experts. A total of 37 pieces of effective data involving 37 ancient Chinese medical books were retrieved from different databases. Through literature mining, statistical analysis, and data processing, combined with modern articles, this study employed bibliometrics to investigate the historical origin, composition, decoction methods, clinical application, and other key information. The results showed that the medicinal origin of Houpo Sanwutang was clearly documented in classic books. Based on the conversion of the measurements from the Han Dynasty, it is recommended that 110.4 g Magnolia Officinalis Cortex, 55.2 g Rhei Radix et Rhizoma, and 72 g Aurantii Fructus Immaturus should be taken. Magnolia Officinalis Cortex and Aurantii Fructus Immaturus should be decocted with 2 400 mL water first, and 1 000 mL should be taken from the decocted liquid. Following this, Rhei Radix et Rhizoma should be added for further decoction, and then 600 mL should be taken from the decocted liquid. A single dose of administration is 200 mL, and the medication can be stopped when patients restore smooth bowel movement. Houpo Sanwutang has the effect of moving Qi, relieving stuffiness and fullness, removing food stagnation, and regulating bowels. It can be used in treating abdominal distending pain, guarding, constipation, and other diseases with the pathogenesis of stagnated heat and stagnated Qi in the stomach. The above results provide reference for the future development and research of Houpo Sanwutang. 
		                        		
		                        		
		                        		
		                        	
9.Thoughts on Development Path of Traditional Chinese Medicine Processing Technology from Perspective of Traditional Medicine and Techniques
Ying LIU ; Yun WANG ; Zhe JIA ; Peng ZHANG ; Jie ZOU ; Cun ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):233-240
		                        		
		                        			
		                        			As an important part of Chinese traditional culture, the processing technology of traditional Chinese medicine(TCM) carries the wisdom of TCM for thousands of years, and its process is complex and rigorous. With the popularization of modern production technology, traditional processing techiques are facing the dual pressures from technological innovation and production standardization under the perspective of intangible cultural heritage. The modernization of TCM processing technology is an inevitable trend for industrial upgrading, but it cannot be separated from the foundation of traditional skills and ignore the core concepts and cultural values it embodies. Therefore, by analyzing the core characteristics of TCM processing technology and its differences with modern production, this paper discusses the establishment of a synergistic innovation mechanism between traditional techniques and modern technologies, the promotion of joint research and development between scientific research institutes and the industry, the strengthening of standardization of processing techniques, and the enhancement of social education and industry training to improve the recognition and inheritance of processing techniques in order to achieve the goal of innovation and protection of TCM processing technologies in the context of modernization, and to promote the high-quality development of the TCM processing industry. 
		                        		
		                        		
		                        		
		                        	
10.Genetic liability to atrial fibrillation, aortic valve disease, and mitral valve disease: a two-sample Mendelian randomization study
World Journal of Emergency Medicine 2025;16(5):475-480
		                        		
		                        			
		                        			BACKGROUND: Research has revealed a relationship between atrial fibrillation (AF) and valvular heart disease; however, the causality remains largely unknown. This study explored whether a causal association between AF and non-rheumatic aortic valve disease (AVD) and mitral valve disease (MVD) could be found.
METHODS: A two-sample Mendelian randomization (TSMR) method was applied to determine the causal effect of AF on AVD, mitral regurgitation, and MVD. The inverse variance weighted (IVW) method was used as the primary analytical approach, and several complementary analyses were conducted. Outliers were detected using the Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) and radial Mendelian randomization (MR) methods.
RESULTS: Genetically predicted AF was found to be causally associated with the risk of MVD (odds ratio [OR]=1.001; 95% confidence interval [CI]: 1.000-1.001; P=1.33×10-6) and mitral regurgitation (OR=1.001; 95% CI: 1.000-1.002; P=0.009). However, no significant causal associations between AF and AVD were detected (OR=1.000; 95% CI: 0.999-1.000; P=0.804). Causal effects were still detected, even after adjusting for potential risk factors or removing the identified outliers. Reverse MR analyses revealed no significant causal effect of valvular heart disease on AF.
CONCLUSION: Our findings demonstrate a positive causal association between AF, MVD, and mitral regurgitation, but not AVD. Further research and an aggressive AF management strategy should be explored as potential measures for preventing MVD.
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail