1.Sex-Specific Susceptibility Loci Associated With Coronary Artery Aneurysms in Patients With Kawasaki Disease
Jae-Jung KIM ; Young Mi HONG ; Sin Weon YUN ; Kyung-Yil LEE ; Kyung Lim YOON ; Myung-Ki HAN ; Gi Beom KIM ; Hong-Ryang KIL ; Min Seob SONG ; Hyoung Doo LEE ; Kee Soo HA ; Hyun Ok JUN ; Jeong Jin YU ; Gi Young JANG ; Jong-Keuk LEE ;
Korean Circulation Journal 2024;54(9):577-586
Background and Objectives:
Kawasaki disease (KD) is an acute vasculitis that primarily affects children under age 5 years. Approximately 20–25% of untreated children with KD and 3–5% of those treated with intravenous immunoglobulin therapy develop coronary artery aneurysms (CAAs). The prevalence of CAAs is much higher in male than in female patients with KD, but the underlying factors contributing to susceptibility to CAAs in patients with KD remain unclear. This study aimed to identify sex-specific susceptibility loci associated with CAAs in KD patients.
Methods:
A sex-stratified genome-wide association study (GWAS) was performed using previously obtained GWAS data from 296 KD patients and a new replication study in an independent set of 976 KD patients by comparing KD patients without CAA (controls) and KD patients with aneurysms (internal diameter ≥5 mm) (cases).
Results:
Six male-specific susceptibility loci, PDE1C, NOS3, DLG2, CPNE8, FUNDC1, and GABRQ (odds ratios [ORs], 2.25–9.98; p=0.00204–1.96×10−6 ), and 2 female-specific susceptibility loci, SMAD3 (OR, 4.59; p=0.00016) and IL1RAPL1 (OR, 4.35; p=0.00026), were significantly associated with CAAs in patients with KD. In addition, the numbers of CAA risk alleles additively contributed to the development of CAAs in patients with KD.
Conclusions
A sex-stratified GWAS identified 6 male-specific (PDE1C, NOS3, DLG2, CPNE8, FUNDC1, and GABRQ) and 2 female-specific (SMAD3 and IL1RAPL1) CAA susceptibility loci in patients with KD.
2.Sex-Specific Susceptibility Loci Associated With Coronary Artery Aneurysms in Patients With Kawasaki Disease
Jae-Jung KIM ; Young Mi HONG ; Sin Weon YUN ; Kyung-Yil LEE ; Kyung Lim YOON ; Myung-Ki HAN ; Gi Beom KIM ; Hong-Ryang KIL ; Min Seob SONG ; Hyoung Doo LEE ; Kee Soo HA ; Hyun Ok JUN ; Jeong Jin YU ; Gi Young JANG ; Jong-Keuk LEE ;
Korean Circulation Journal 2024;54(9):577-586
Background and Objectives:
Kawasaki disease (KD) is an acute vasculitis that primarily affects children under age 5 years. Approximately 20–25% of untreated children with KD and 3–5% of those treated with intravenous immunoglobulin therapy develop coronary artery aneurysms (CAAs). The prevalence of CAAs is much higher in male than in female patients with KD, but the underlying factors contributing to susceptibility to CAAs in patients with KD remain unclear. This study aimed to identify sex-specific susceptibility loci associated with CAAs in KD patients.
Methods:
A sex-stratified genome-wide association study (GWAS) was performed using previously obtained GWAS data from 296 KD patients and a new replication study in an independent set of 976 KD patients by comparing KD patients without CAA (controls) and KD patients with aneurysms (internal diameter ≥5 mm) (cases).
Results:
Six male-specific susceptibility loci, PDE1C, NOS3, DLG2, CPNE8, FUNDC1, and GABRQ (odds ratios [ORs], 2.25–9.98; p=0.00204–1.96×10−6 ), and 2 female-specific susceptibility loci, SMAD3 (OR, 4.59; p=0.00016) and IL1RAPL1 (OR, 4.35; p=0.00026), were significantly associated with CAAs in patients with KD. In addition, the numbers of CAA risk alleles additively contributed to the development of CAAs in patients with KD.
Conclusions
A sex-stratified GWAS identified 6 male-specific (PDE1C, NOS3, DLG2, CPNE8, FUNDC1, and GABRQ) and 2 female-specific (SMAD3 and IL1RAPL1) CAA susceptibility loci in patients with KD.
3.Platelet-rich plasma protects hippocampal neurons and memory functions in a rat model of vascular dementia
Ji-Hyun MOON ; Ah La CHOI ; Hyeon-Jeong NOH ; Jae Hwang SONG ; Geum-Lan HONG ; Nam Seob LEE ; Young-Gil JEONG ; Seung Yun HAN
Anatomy & Cell Biology 2024;57(4):559-569
Platelet-rich plasma (PRP) is a promising biomaterial rich in bioactive growth factors, offering potential as a therapeutic agent for various diseases. However, its effectiveness in central nervous system disorders like vascular dementia (VaD) remains underexplored. This study investigated the potential of PRP to mitigate VaD progression in vivo. A rat model of VaD was established via bilateral common carotid artery occlusion and hypovolemia operation. Rats were randomly assigned to receive either PRP or platelet-poor plasma (PPP)—the latter being a byproduct of PRP preparation and used as a reference standard—resulting in the groups designated as ‘operated group (OP)+PRP’ and ‘OP+PPP’, respectively. PRP or PPP (500 μl) was administered intraperitoneally on the day of the operation and postoperative days 2, 4, 6, and 8. Cognitive function was assessed using the Y-maze, Barnes maze, and passive avoidance tests. On postoperative day 8, hippocampal samples were subjected to histological and semi-quantitative analyses. OP exhibited significant memory decline compared to controls, while the ‘OP+PRP’ group showed notable improvement. Histological analysis revealed increased neuronal loss and neuroinflammation in OP hippocampi, mitigated in ‘OP+PRP’. Semi-quantitative analysis showed decreased expression of brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase B (TrkB) in OP, restored in ‘OP+PPP’ and further in ‘OP+PRP’. These results highlight PRP’s protective effects against VaD-induced hippocampal damage and cognitive impairment, partially attributed to BDNF/TrkB pathway upregulation.
4.Therapeutic effects of surgical debulking of metastatic lymph nodes in cervical cancer IIICr: a trial protocol for a phase III, multicenter, randomized controlled study (KGOG1047/DEBULK trial)
Bo Seong YUN ; Kwang-Beom LEE ; Keun Ho LEE ; Ha Kyun CHANG ; Joo-Young KIM ; Myong Cheol LIM ; Chel Hun CHOI ; Hanbyoul CHO ; Dae-Yeon KIM ; Yun Hwan KIM ; Joong Sub CHOI ; Chae Hyeong LEE ; Jae-Weon KIM ; Sang Wun KIM ; Yong Bae KIM ; Chi-Heum CHO ; Dae Gy HONG ; Yong Jung SONG ; Seob JEON ; Min Kyu KIM ; Dae Hoon JEONG ; Hyun PARK ; Seok Mo KIM ; Sang-Il PARK ; Jae-Yun SONG ; Asima MUKHOPADHYAY ; Dang Huy Quoc THINH ; Nirmala Chandralega KAMPAN ; Grace J. LEE ; Jae-Hoon KIM ; Keun-Yong EOM ; Ju-Won ROH
Journal of Gynecologic Oncology 2024;35(5):e57-
Background:
Bulky or multiple lymph node (LN) metastases are associated with poor prognosis in cervical cancer, and the size or number of LN metastases is not yet reflected in the staging system and therapeutic strategy. Although the therapeutic effects of surgical resection of bulky LNs before standard treatment have been reported in several retrospective studies, wellplanned randomized clinical studies are lacking. Therefore, the aim of the Korean Gynecologic Oncology Group (KGOG) 1047/DEBULK trial is to investigate whether the debulking surgery of bulky or multiple LNs prior to concurrent chemoradiation therapy (CCRT) improves the survival rate of patients with cervical cancer IIICr diagnosed by imaging tests.
Methods
The KGOG 1047/DEBULK trial is a phase III, multicenter, randomized clinical trial involving patients with bulky or multiple LN metastases in cervical cancer IIICr. This study will include patients with a short-axis diameter of a pelvic or para-aortic LN ≥2 cm or ≥3 LNs with a short-axis diameter ≥1 cm and for whom CCRT is planned. The treatment arms will be randomly allocated in a 1:1 ratio to either receive CCRT (control arm) or undergo surgical debulking of bulky or multiple LNs before CCRT (experimental arm). CCRT consists of extended-field external beam radiotherapy/pelvic radiotherapy, brachytherapy and LN boost, and weekly chemotherapy with cisplatin (40 mg/m 2 ), 4–6 times administered intravenously.The primary endpoint will be 3-year progression-free survival rate. The secondary endpoints will be 3-year overall survival rate, treatment-related complications, and accuracy of radiological diagnosis of bulky or multiple LNs.
5.Platelet-rich plasma protects hippocampal neurons and memory functions in a rat model of vascular dementia
Ji-Hyun MOON ; Ah La CHOI ; Hyeon-Jeong NOH ; Jae Hwang SONG ; Geum-Lan HONG ; Nam Seob LEE ; Young-Gil JEONG ; Seung Yun HAN
Anatomy & Cell Biology 2024;57(4):559-569
Platelet-rich plasma (PRP) is a promising biomaterial rich in bioactive growth factors, offering potential as a therapeutic agent for various diseases. However, its effectiveness in central nervous system disorders like vascular dementia (VaD) remains underexplored. This study investigated the potential of PRP to mitigate VaD progression in vivo. A rat model of VaD was established via bilateral common carotid artery occlusion and hypovolemia operation. Rats were randomly assigned to receive either PRP or platelet-poor plasma (PPP)—the latter being a byproduct of PRP preparation and used as a reference standard—resulting in the groups designated as ‘operated group (OP)+PRP’ and ‘OP+PPP’, respectively. PRP or PPP (500 μl) was administered intraperitoneally on the day of the operation and postoperative days 2, 4, 6, and 8. Cognitive function was assessed using the Y-maze, Barnes maze, and passive avoidance tests. On postoperative day 8, hippocampal samples were subjected to histological and semi-quantitative analyses. OP exhibited significant memory decline compared to controls, while the ‘OP+PRP’ group showed notable improvement. Histological analysis revealed increased neuronal loss and neuroinflammation in OP hippocampi, mitigated in ‘OP+PRP’. Semi-quantitative analysis showed decreased expression of brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase B (TrkB) in OP, restored in ‘OP+PPP’ and further in ‘OP+PRP’. These results highlight PRP’s protective effects against VaD-induced hippocampal damage and cognitive impairment, partially attributed to BDNF/TrkB pathway upregulation.
6.Platelet-rich plasma protects hippocampal neurons and memory functions in a rat model of vascular dementia
Ji-Hyun MOON ; Ah La CHOI ; Hyeon-Jeong NOH ; Jae Hwang SONG ; Geum-Lan HONG ; Nam Seob LEE ; Young-Gil JEONG ; Seung Yun HAN
Anatomy & Cell Biology 2024;57(4):559-569
Platelet-rich plasma (PRP) is a promising biomaterial rich in bioactive growth factors, offering potential as a therapeutic agent for various diseases. However, its effectiveness in central nervous system disorders like vascular dementia (VaD) remains underexplored. This study investigated the potential of PRP to mitigate VaD progression in vivo. A rat model of VaD was established via bilateral common carotid artery occlusion and hypovolemia operation. Rats were randomly assigned to receive either PRP or platelet-poor plasma (PPP)—the latter being a byproduct of PRP preparation and used as a reference standard—resulting in the groups designated as ‘operated group (OP)+PRP’ and ‘OP+PPP’, respectively. PRP or PPP (500 μl) was administered intraperitoneally on the day of the operation and postoperative days 2, 4, 6, and 8. Cognitive function was assessed using the Y-maze, Barnes maze, and passive avoidance tests. On postoperative day 8, hippocampal samples were subjected to histological and semi-quantitative analyses. OP exhibited significant memory decline compared to controls, while the ‘OP+PRP’ group showed notable improvement. Histological analysis revealed increased neuronal loss and neuroinflammation in OP hippocampi, mitigated in ‘OP+PRP’. Semi-quantitative analysis showed decreased expression of brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase B (TrkB) in OP, restored in ‘OP+PPP’ and further in ‘OP+PRP’. These results highlight PRP’s protective effects against VaD-induced hippocampal damage and cognitive impairment, partially attributed to BDNF/TrkB pathway upregulation.
7.Therapeutic effects of surgical debulking of metastatic lymph nodes in cervical cancer IIICr: a trial protocol for a phase III, multicenter, randomized controlled study (KGOG1047/DEBULK trial)
Bo Seong YUN ; Kwang-Beom LEE ; Keun Ho LEE ; Ha Kyun CHANG ; Joo-Young KIM ; Myong Cheol LIM ; Chel Hun CHOI ; Hanbyoul CHO ; Dae-Yeon KIM ; Yun Hwan KIM ; Joong Sub CHOI ; Chae Hyeong LEE ; Jae-Weon KIM ; Sang Wun KIM ; Yong Bae KIM ; Chi-Heum CHO ; Dae Gy HONG ; Yong Jung SONG ; Seob JEON ; Min Kyu KIM ; Dae Hoon JEONG ; Hyun PARK ; Seok Mo KIM ; Sang-Il PARK ; Jae-Yun SONG ; Asima MUKHOPADHYAY ; Dang Huy Quoc THINH ; Nirmala Chandralega KAMPAN ; Grace J. LEE ; Jae-Hoon KIM ; Keun-Yong EOM ; Ju-Won ROH
Journal of Gynecologic Oncology 2024;35(5):e57-
Background:
Bulky or multiple lymph node (LN) metastases are associated with poor prognosis in cervical cancer, and the size or number of LN metastases is not yet reflected in the staging system and therapeutic strategy. Although the therapeutic effects of surgical resection of bulky LNs before standard treatment have been reported in several retrospective studies, wellplanned randomized clinical studies are lacking. Therefore, the aim of the Korean Gynecologic Oncology Group (KGOG) 1047/DEBULK trial is to investigate whether the debulking surgery of bulky or multiple LNs prior to concurrent chemoradiation therapy (CCRT) improves the survival rate of patients with cervical cancer IIICr diagnosed by imaging tests.
Methods
The KGOG 1047/DEBULK trial is a phase III, multicenter, randomized clinical trial involving patients with bulky or multiple LN metastases in cervical cancer IIICr. This study will include patients with a short-axis diameter of a pelvic or para-aortic LN ≥2 cm or ≥3 LNs with a short-axis diameter ≥1 cm and for whom CCRT is planned. The treatment arms will be randomly allocated in a 1:1 ratio to either receive CCRT (control arm) or undergo surgical debulking of bulky or multiple LNs before CCRT (experimental arm). CCRT consists of extended-field external beam radiotherapy/pelvic radiotherapy, brachytherapy and LN boost, and weekly chemotherapy with cisplatin (40 mg/m 2 ), 4–6 times administered intravenously.The primary endpoint will be 3-year progression-free survival rate. The secondary endpoints will be 3-year overall survival rate, treatment-related complications, and accuracy of radiological diagnosis of bulky or multiple LNs.
8.Sex-Specific Susceptibility Loci Associated With Coronary Artery Aneurysms in Patients With Kawasaki Disease
Jae-Jung KIM ; Young Mi HONG ; Sin Weon YUN ; Kyung-Yil LEE ; Kyung Lim YOON ; Myung-Ki HAN ; Gi Beom KIM ; Hong-Ryang KIL ; Min Seob SONG ; Hyoung Doo LEE ; Kee Soo HA ; Hyun Ok JUN ; Jeong Jin YU ; Gi Young JANG ; Jong-Keuk LEE ;
Korean Circulation Journal 2024;54(9):577-586
Background and Objectives:
Kawasaki disease (KD) is an acute vasculitis that primarily affects children under age 5 years. Approximately 20–25% of untreated children with KD and 3–5% of those treated with intravenous immunoglobulin therapy develop coronary artery aneurysms (CAAs). The prevalence of CAAs is much higher in male than in female patients with KD, but the underlying factors contributing to susceptibility to CAAs in patients with KD remain unclear. This study aimed to identify sex-specific susceptibility loci associated with CAAs in KD patients.
Methods:
A sex-stratified genome-wide association study (GWAS) was performed using previously obtained GWAS data from 296 KD patients and a new replication study in an independent set of 976 KD patients by comparing KD patients without CAA (controls) and KD patients with aneurysms (internal diameter ≥5 mm) (cases).
Results:
Six male-specific susceptibility loci, PDE1C, NOS3, DLG2, CPNE8, FUNDC1, and GABRQ (odds ratios [ORs], 2.25–9.98; p=0.00204–1.96×10−6 ), and 2 female-specific susceptibility loci, SMAD3 (OR, 4.59; p=0.00016) and IL1RAPL1 (OR, 4.35; p=0.00026), were significantly associated with CAAs in patients with KD. In addition, the numbers of CAA risk alleles additively contributed to the development of CAAs in patients with KD.
Conclusions
A sex-stratified GWAS identified 6 male-specific (PDE1C, NOS3, DLG2, CPNE8, FUNDC1, and GABRQ) and 2 female-specific (SMAD3 and IL1RAPL1) CAA susceptibility loci in patients with KD.
9.Platelet-rich plasma protects hippocampal neurons and memory functions in a rat model of vascular dementia
Ji-Hyun MOON ; Ah La CHOI ; Hyeon-Jeong NOH ; Jae Hwang SONG ; Geum-Lan HONG ; Nam Seob LEE ; Young-Gil JEONG ; Seung Yun HAN
Anatomy & Cell Biology 2024;57(4):559-569
Platelet-rich plasma (PRP) is a promising biomaterial rich in bioactive growth factors, offering potential as a therapeutic agent for various diseases. However, its effectiveness in central nervous system disorders like vascular dementia (VaD) remains underexplored. This study investigated the potential of PRP to mitigate VaD progression in vivo. A rat model of VaD was established via bilateral common carotid artery occlusion and hypovolemia operation. Rats were randomly assigned to receive either PRP or platelet-poor plasma (PPP)—the latter being a byproduct of PRP preparation and used as a reference standard—resulting in the groups designated as ‘operated group (OP)+PRP’ and ‘OP+PPP’, respectively. PRP or PPP (500 μl) was administered intraperitoneally on the day of the operation and postoperative days 2, 4, 6, and 8. Cognitive function was assessed using the Y-maze, Barnes maze, and passive avoidance tests. On postoperative day 8, hippocampal samples were subjected to histological and semi-quantitative analyses. OP exhibited significant memory decline compared to controls, while the ‘OP+PRP’ group showed notable improvement. Histological analysis revealed increased neuronal loss and neuroinflammation in OP hippocampi, mitigated in ‘OP+PRP’. Semi-quantitative analysis showed decreased expression of brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase B (TrkB) in OP, restored in ‘OP+PPP’ and further in ‘OP+PRP’. These results highlight PRP’s protective effects against VaD-induced hippocampal damage and cognitive impairment, partially attributed to BDNF/TrkB pathway upregulation.
10.Platelet-rich plasma protects hippocampal neurons and memory functions in a rat model of vascular dementia
Ji-Hyun MOON ; Ah La CHOI ; Hyeon-Jeong NOH ; Jae Hwang SONG ; Geum-Lan HONG ; Nam Seob LEE ; Young-Gil JEONG ; Seung Yun HAN
Anatomy & Cell Biology 2024;57(4):559-569
Platelet-rich plasma (PRP) is a promising biomaterial rich in bioactive growth factors, offering potential as a therapeutic agent for various diseases. However, its effectiveness in central nervous system disorders like vascular dementia (VaD) remains underexplored. This study investigated the potential of PRP to mitigate VaD progression in vivo. A rat model of VaD was established via bilateral common carotid artery occlusion and hypovolemia operation. Rats were randomly assigned to receive either PRP or platelet-poor plasma (PPP)—the latter being a byproduct of PRP preparation and used as a reference standard—resulting in the groups designated as ‘operated group (OP)+PRP’ and ‘OP+PPP’, respectively. PRP or PPP (500 μl) was administered intraperitoneally on the day of the operation and postoperative days 2, 4, 6, and 8. Cognitive function was assessed using the Y-maze, Barnes maze, and passive avoidance tests. On postoperative day 8, hippocampal samples were subjected to histological and semi-quantitative analyses. OP exhibited significant memory decline compared to controls, while the ‘OP+PRP’ group showed notable improvement. Histological analysis revealed increased neuronal loss and neuroinflammation in OP hippocampi, mitigated in ‘OP+PRP’. Semi-quantitative analysis showed decreased expression of brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase B (TrkB) in OP, restored in ‘OP+PPP’ and further in ‘OP+PRP’. These results highlight PRP’s protective effects against VaD-induced hippocampal damage and cognitive impairment, partially attributed to BDNF/TrkB pathway upregulation.

Result Analysis
Print
Save
E-mail