1.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
2.Retrocrural capillary hemangioma: a case report
Han Sol LEE ; Tae-hong YOON ; Chul Ho LEE ; Yun-Ho JEON
Kosin Medical Journal 2025;40(1):80-83
An enlarged retrocrural mass was incidentally discovered in a 79-year-old male patient. Preoperative chest computed tomography and thoracolumbar junction spine magnetic resonance imaging indicated the possibility of a paraganglioma, Castleman disease, or neurogenic tumor. Due to the large size of the tumor, malignancy could not be ruled out, and we decided to perform surgery for diagnostic and therapeutic purposes. Video-assisted thoracoscopic surgery was safely performed, and histopathological examination revealed a capillary hemangioma.
3.Validation of the Korean Version of the Huntington’s Disease Quality of Life Battery for Carers
Hee Jin CHANG ; Eungseok OH ; Won Tae YOON ; Chan Young LEE ; Kyum-Yil KWON ; Yun Su HWANG ; Chaewon SHIN ; Jee-Young LEE
Journal of Movement Disorders 2025;18(2):160-164
Objective:
The Huntington’s Disease Quality of Life Battery for Carers (HDQoL-C) is used to evaluate caregiver quality of life. This study aimed to develop and validate the Korean version of the HDQoL-C (K-HDQoL-C) to assess the burden on Korean caregivers of Huntington’s disease (HD) patients.
Methods:
A total of 19 HD caregivers (7 females, mean age 55.4±14.6 years) participated in this study. The K-HDQoL-C, a translation of the English version, consisted of demographic information, caring aspects, life satisfaction, and feelings about life. It was administered twice, 2 weeks apart. Internal consistency was evaluated using Cronbach’s α, and test-retest reliability was assessed with intraclass correlation coefficients. The relationship with the Zarit Burden Interview-12 (ZBI-12) was analyzed.
Results:
The internal consistencies of the K-HDQoL-C were 0.771 (part 2), 0.938 (part 3), and 0.891 (part 4). The test-retest reliability ranged from 0.908 to 0.936. Part 3 was negatively correlated with the ZBI-12, and part 4 was positively correlated with the ZBI-12 (r=-0.780, 0.923; p<0.001).
Conclusion
The K-HDQoL-C effectively evaluates the challenges faced by HD caregivers, particularly in terms of care aspects and life satisfaction.
4.Stress Accelerates Depressive-Like Behavior through Increase of SPNS2 Expression in Tg2576 Mice
Seung Sik YOO ; Yuri KIM ; Dong Won LEE ; Hyeon Joo HAM ; Jung Ho PARK ; In Jun YEO ; Ju Young CHANG ; Jaesuk YUN ; Dong Ju SON ; Sang-Bae HAN ; Jin Tae HONG
Biomolecules & Therapeutics 2025;33(3):417-428
To investigate the relationship between depression and AD, water avoidance stress (WAS) was induced for 10 days in both Tg2576 mice and wild-type (WT) mice. After WAS, memory function and depressive-like behavior were investigated in Tg2576 mice. Tg2576 WAS mice exhibited more depressive-like behaviors than WT WAS and Tg2576 control (CON) mice. Strikingly, Tg2576 CON mice showed more depressive-like behaviors than WT mice. Moreover, corticosterone and phospho-glucocorticoid receptor (p-GR) levels were also higher in Tg2576 WAS mice in comparison to Tg2576 CON mice. Spinster homologue 2 (SPNS2) is a member of non-ATP-dependent transporter. The role of SPNS2 was widely known as a sphingosine-1-phosphate (S1P) transporter, which export intracellular S1P from cells. Using GEO database to analyze SPNS2 gene expression changes in patients with AD and depression, we show that SPNS2 gene expression correlates with AD and depression. Interestingly, Tg2576 WAS mice displayed significantly increased levels of SPNS2 w1hen compared to Tg2576 CON counterparts. SPNS2 levels were also higher in Tg2576 CON mice in comparison with WT CON mice. Remarkably, we found a decrease in S1P brain levels and an increase in S1P serum levels of Tg2576 WAS mice in comparison with Tg2576 CON mice. Accordingly, WAS induced group further decreased S1P levels in the brains. However, the level in the serum further increased in comparison with non-induced group. Therefore, these results suggest that AD and depression could be associated, and that Tg2576 transgenic mice are more susceptible to stress-induced depression through the release of S1P by SPNS2 up-regulation.
5.Harnessing Institutionally Developed Clinical Targeted Sequencing to Improve Patient Survival in Breast Cancer: A Seven-Year Experience
Jiwon KOH ; Jinyong KIM ; Go-Un WOO ; Hanbaek YI ; So Yean KWON ; Jeongmin SEO ; Jeong Mo BAE ; Jung Ho KIM ; Jae Kyung WON ; Han Suk RYU ; Yoon Kyung JEON ; Dae-Won LEE ; Miso KIM ; Tae-Yong KIM ; Kyung-Hun LEE ; Tae-You KIM ; Jee-Soo LEE ; Moon-Woo SEONG ; Sheehyun KIM ; Sungyoung LEE ; Hongseok YUN ; Myung Geun SONG ; Jaeyong CHOI ; Jong-Il KIM ; Seock-Ah IM
Cancer Research and Treatment 2025;57(2):443-456
Purpose:
Considering the high disease burden and unique features of Asian patients with breast cancer (BC), it is essential to have a comprehensive view of genetic characteristics in this population. An institutional targeted sequencing platform was developed through the Korea Research-Driven Hospitals project and was incorporated into clinical practice. This study explores the use of targeted next-generation sequencing (NGS) and its outcomes in patients with advanced/metastatic BC in the real world.
Materials and Methods:
We reviewed the results of NGS tests administered to BC patients using a customized sequencing platform—FiRST Cancer Panel (FCP)—over 7 years. We systematically described clinical translation of FCP for precise diagnostics, personalized therapeutic strategies, and unraveling disease pathogenesis.
Results:
NGS tests were conducted on 548 samples from 522 patients with BC. Ninety-seven point six percentage of tested samples harbored at least one pathogenic alteration. The common alterations included mutations in TP53 (56.2%), PIK3CA (31.2%), GATA3 (13.8%), BRCA2 (10.2%), and amplifications of CCND1 (10.8%), FGF19 (10.0%), and ERBB2 (9.5%). NGS analysis of ERBB2 amplification correlated well with human epidermal growth factor receptor 2 immunohistochemistry and in situ hybridization. RNA panel analyses found potentially actionable and prognostic fusion genes. FCP effectively screened for potentially germline pathogenic/likely pathogenic mutation. Ten point three percent of BC patients received matched therapy guided by NGS, resulting in a significant overall survival advantage (p=0.022), especially for metastatic BCs.
Conclusion
Clinical NGS provided multifaceted benefits, deepening our understanding of the disease, improving diagnostic precision, and paving the way for targeted therapies. The concrete advantages of FCP highlight the importance of multi-gene testing for BC, especially for metastatic conditions.
6.The Survival and Financial Benefit of Investigator-Initiated Trials Conducted by Korean Cancer Study Group
Bum Jun KIM ; Chi Hoon MAENG ; Bhumsuk KEAM ; Young-Hyuck IM ; Jungsil RO ; Kyung Hae JUNG ; Seock-Ah IM ; Tae Won KIM ; Jae Lyun LEE ; Dae Seog HEO ; Sang-We KIM ; Keunchil PARK ; Myung-Ju AHN ; Byoung Chul CHO ; Hoon-Kyo KIM ; Yoon-Koo KANG ; Jae Yong CHO ; Hwan Jung YUN ; Byung-Ho NAM ; Dae Young ZANG
Cancer Research and Treatment 2025;57(1):39-46
Purpose:
The Korean Cancer Study Group (KCSG) is a nationwide cancer clinical trial group dedicated to advancing investigator-initiated trials (IITs) by conducting and supporting clinical trials. This study aims to review IITs conducted by KCSG and quantitatively evaluate the survival and financial benefits of IITs for patients.
Materials and Methods:
We reviewed IITs conducted by KCSG from 1998 to 2023, analyzing progression-free survival (PFS) and overall survival (OS) gains for participants. PFS and OS benefits were calculated as the difference in median survival times between the intervention and control groups, multiplied by the number of patients in the intervention group. Financial benefits were assessed based on the cost of investigational products provided.
Results:
From 1998 to 2023, KCSG conducted 310 IITs, with 133 completed and published. Of these, 21 were included in the survival analysis. The analysis revealed that 1,951 patients in the intervention groups gained a total of 2,558.4 months (213.2 years) of PFS and 2,501.6 months (208.5 years) of OS, with median gains of 1.31 months in PFS and 1.58 months in OS per patient. When analyzing only statistically significant results, PFS and OS gain per patients was 1.69 months and 3.02 months, respectively. Investigational drug cost analysis from six available IITs indicated that investigational products provided to 252 patients were valued at 10,400,077,294 won (approximately 8,046,481 US dollars), averaging about 41,270,148 won (approximately 31,930 US dollars) per patient.
Conclusion
Our findings, based on analysis of published research, suggest that IITs conducted by KCSG led to survival benefits for participants and, in some studies, may have provided financial benefits by providing investment drugs.
7.Enhancing Identification of High-Risk cN0 Lung Adenocarcinoma Patients Using MRI-Based Radiomic Features
Harim KIM ; Jonghoon KIM ; Soohyun HWANG ; You Jin OH ; Joong Hyun AHN ; Min-Ji KIM ; Tae Hee HONG ; Sung Goo PARK ; Joon Young CHOI ; Hong Kwan KIM ; Jhingook KIM ; Sumin SHIN ; Ho Yun LEE
Cancer Research and Treatment 2025;57(1):57-69
Purpose:
This study aimed to develop a magnetic resonance imaging (MRI)–based radiomics model to predict high-risk pathologic features for lung adenocarcinoma: micropapillary and solid pattern (MPsol), spread through air space, and poorly differentiated patterns.
Materials and Methods:
As a prospective study, we screened clinical N0 lung cancer patients who were surgical candidates and had undergone both 18F-fluorodeoxyglucose (FDG) positron emission tomography–computed tomography (PET/CT) and chest CT from August 2018 to January 2020. We recruited patients meeting our proposed imaging criteria indicating high-risk, that is, poorer prognosis of lung adenocarcinoma, using CT and FDG PET/CT. If possible, these patients underwent an MRI examination from which we extracted 77 radiomics features from T1-contrast-enhanced and T2-weighted images. Additionally, patient demographics, maximum standardized uptake value on FDG PET/CT, and the mean apparent diffusion coefficient value on diffusion-weighted image, were considered together to build prediction models for high-risk pathologic features.
Results:
Among 616 patients, 72 patients met the imaging criteria for high-risk lung cancer and underwent lung MRI. The magnetic resonance (MR)–eligible group showed a higher prevalence of nodal upstaging (29.2% vs. 4.2%, p < 0.001), vascular invasion (6.5% vs. 2.1%, p=0.011), high-grade pathologic features (p < 0.001), worse 4-year disease-free survival (p < 0.001) compared with non-MR-eligible group. The prediction power for MR-based radiomics model predicting high-risk pathologic features was good, with mean area under the receiver operating curve (AUC) value measuring 0.751-0.886 in test sets. Adding clinical variables increased the predictive performance for MPsol and the poorly differentiated pattern using the 2021 grading system (AUC, 0.860 and 0.907, respectively).
Conclusion
Our imaging criteria can effectively screen high-risk lung cancer patients and predict high-risk pathologic features by our MR-based prediction model using radiomics.
8.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
9.Retrocrural capillary hemangioma: a case report
Han Sol LEE ; Tae-hong YOON ; Chul Ho LEE ; Yun-Ho JEON
Kosin Medical Journal 2025;40(1):80-83
An enlarged retrocrural mass was incidentally discovered in a 79-year-old male patient. Preoperative chest computed tomography and thoracolumbar junction spine magnetic resonance imaging indicated the possibility of a paraganglioma, Castleman disease, or neurogenic tumor. Due to the large size of the tumor, malignancy could not be ruled out, and we decided to perform surgery for diagnostic and therapeutic purposes. Video-assisted thoracoscopic surgery was safely performed, and histopathological examination revealed a capillary hemangioma.
10.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.

Result Analysis
Print
Save
E-mail