1.Tanshinone, a Natural NADPH Oxidase Inhibitor, Mitigates Testosterone-Induced Hair Loss
Yeo Kyu HUR ; Jin Yeong CHAE ; Min Hye CHOI ; Kkotnara PARK ; Da-Woon BAE ; Soo-Bong PARK ; Sun-Shin CHA ; Hye Eun LEE ; In Hye LEE ; Yun Soo BAE
Biomolecules & Therapeutics 2025;33(1):210-220
		                        		
		                        			
		                        			 Previous studies have shown that testosterone activates the GPRC6A-Duox1 axis, resulting in the production of H 2O 2 which leads to the apoptosis of keratinocytes and ultimately hair loss. Here, we elucidated a molecular mechanism by which the non-genomic action of testosterone regulates cellular redox status in androgenetic alopecia (AGA). Building upon this molecular understanding, we conducted a high-throughput screening assay of Nox inhibitors from a natural compounds library. This screening identified diterpenoid compounds, specifically Tanshinone I, Tanshinone IIA, Tanshinone IIB, and Cryptotanshinone, derived from Salviae Miltiorrhizae Radix. The IC50 values for Nox isozymes were found to be 2.6-12.9 μM for Tanshinone I, 1.9-7.2 μM for Tanshinone IIA, 5.2-11.9 μM for Tanshinone IIB, and 2.1-7.9 μM for Cryptotanshinone. Furthermore, 3D computational docking analysis confirmed the structural basis by which Tanshinone compounds inhibit Nox activity. These compounds were observed to substitute for NADPH at the π-π bond site between NADPH and FAD, leading to the suppression of Nox activity. Notably, Tanshinone I and Tanshinone IIA effectively inhibited Nox activity heightened by testosterone, consequently reducing the production of intracellular H2O2 and preventing cell apoptosis. In an animal study involving the application of testosterone to the back skin of 8-week-old C57BL/6J mice to inhibit hair growth, subsequent treatment with Tanshinone I or Tanshinone IIA alongside testosterone resulted in a substantial increase in hair follicle length compared to testosterone treatment alone. These findings underscore the potential efficacy of Tanshinone I and Tanshinone IIA as therapeutic agents for AGA by inhibiting Nox activity. 
		                        		
		                        		
		                        		
		                        	
2.Tanshinone, a Natural NADPH Oxidase Inhibitor, Mitigates Testosterone-Induced Hair Loss
Yeo Kyu HUR ; Jin Yeong CHAE ; Min Hye CHOI ; Kkotnara PARK ; Da-Woon BAE ; Soo-Bong PARK ; Sun-Shin CHA ; Hye Eun LEE ; In Hye LEE ; Yun Soo BAE
Biomolecules & Therapeutics 2025;33(1):210-220
		                        		
		                        			
		                        			 Previous studies have shown that testosterone activates the GPRC6A-Duox1 axis, resulting in the production of H 2O 2 which leads to the apoptosis of keratinocytes and ultimately hair loss. Here, we elucidated a molecular mechanism by which the non-genomic action of testosterone regulates cellular redox status in androgenetic alopecia (AGA). Building upon this molecular understanding, we conducted a high-throughput screening assay of Nox inhibitors from a natural compounds library. This screening identified diterpenoid compounds, specifically Tanshinone I, Tanshinone IIA, Tanshinone IIB, and Cryptotanshinone, derived from Salviae Miltiorrhizae Radix. The IC50 values for Nox isozymes were found to be 2.6-12.9 μM for Tanshinone I, 1.9-7.2 μM for Tanshinone IIA, 5.2-11.9 μM for Tanshinone IIB, and 2.1-7.9 μM for Cryptotanshinone. Furthermore, 3D computational docking analysis confirmed the structural basis by which Tanshinone compounds inhibit Nox activity. These compounds were observed to substitute for NADPH at the π-π bond site between NADPH and FAD, leading to the suppression of Nox activity. Notably, Tanshinone I and Tanshinone IIA effectively inhibited Nox activity heightened by testosterone, consequently reducing the production of intracellular H2O2 and preventing cell apoptosis. In an animal study involving the application of testosterone to the back skin of 8-week-old C57BL/6J mice to inhibit hair growth, subsequent treatment with Tanshinone I or Tanshinone IIA alongside testosterone resulted in a substantial increase in hair follicle length compared to testosterone treatment alone. These findings underscore the potential efficacy of Tanshinone I and Tanshinone IIA as therapeutic agents for AGA by inhibiting Nox activity. 
		                        		
		                        		
		                        		
		                        	
3.Tanshinone, a Natural NADPH Oxidase Inhibitor, Mitigates Testosterone-Induced Hair Loss
Yeo Kyu HUR ; Jin Yeong CHAE ; Min Hye CHOI ; Kkotnara PARK ; Da-Woon BAE ; Soo-Bong PARK ; Sun-Shin CHA ; Hye Eun LEE ; In Hye LEE ; Yun Soo BAE
Biomolecules & Therapeutics 2025;33(1):210-220
		                        		
		                        			
		                        			 Previous studies have shown that testosterone activates the GPRC6A-Duox1 axis, resulting in the production of H 2O 2 which leads to the apoptosis of keratinocytes and ultimately hair loss. Here, we elucidated a molecular mechanism by which the non-genomic action of testosterone regulates cellular redox status in androgenetic alopecia (AGA). Building upon this molecular understanding, we conducted a high-throughput screening assay of Nox inhibitors from a natural compounds library. This screening identified diterpenoid compounds, specifically Tanshinone I, Tanshinone IIA, Tanshinone IIB, and Cryptotanshinone, derived from Salviae Miltiorrhizae Radix. The IC50 values for Nox isozymes were found to be 2.6-12.9 μM for Tanshinone I, 1.9-7.2 μM for Tanshinone IIA, 5.2-11.9 μM for Tanshinone IIB, and 2.1-7.9 μM for Cryptotanshinone. Furthermore, 3D computational docking analysis confirmed the structural basis by which Tanshinone compounds inhibit Nox activity. These compounds were observed to substitute for NADPH at the π-π bond site between NADPH and FAD, leading to the suppression of Nox activity. Notably, Tanshinone I and Tanshinone IIA effectively inhibited Nox activity heightened by testosterone, consequently reducing the production of intracellular H2O2 and preventing cell apoptosis. In an animal study involving the application of testosterone to the back skin of 8-week-old C57BL/6J mice to inhibit hair growth, subsequent treatment with Tanshinone I or Tanshinone IIA alongside testosterone resulted in a substantial increase in hair follicle length compared to testosterone treatment alone. These findings underscore the potential efficacy of Tanshinone I and Tanshinone IIA as therapeutic agents for AGA by inhibiting Nox activity. 
		                        		
		                        		
		                        		
		                        	
4. Role of sirtuin 5 in cardiovascular diseases
Da-Yun YU ; Jin-Wen XU ; Shuang LING
Chinese Pharmacological Bulletin 2024;40(3):405-409
		                        		
		                        			
		                        			 Cardiovascular diseases ( CVDs ) are the leading cause of death worldwide and pose a serious threat to human health. Silent information regulator 5 ( SIRT5 ) , which is widely distributed in cardiac myocytes, vascular smooth muscle cells and endothelial cells,as a novel deacylation-modifying enzyme,plays an important role in CVDs through deacetylation, desuccinylation and demalonylation. This review summarizes the pathophysiolog-ical mechanism of SIRT5 from the aspects of energy metabolism, regulation of inflammatory response and oxidative stress, apart from the role of SIRT5 in CVDs such as myocardial infarction, myocardial hypertrophy, arrhythmia, atherosclerosis and heart failure. This review also figures out the current research progress of SIRT5 -related inhibitors and agonists, so as to provide strategies for targeting SIRT5 to prevent and treat CVDs. 
		                        		
		                        		
		                        		
		                        	
5.Discussion on the Evolution of the Traditional Preparation Process of Pinelliae Rhizoma Fermentata
Da-Meng YU ; Hui-Fang LI ; Chun MA ; Guo-Dong HUA ; Qiang LI ; Xue-Yun YU ; Li-Wei LIU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):790-797
		                        		
		                        			
		                        			This article discussed the evolution of the traditional preparation process of Pinelliae Rhizoma Fermentata.The production methods for Pinelliae Rhizoma Fermentata in Song Dynasty include cake-making of Pinelliae Rhizoma together with ginger juice and fermentation after cake-making,and the former method of cake-making was the mainstream.The process technology in Jin and Yuan Dynasties inherited from that in Song Dynasty,and the application of Pinelliae Rhizoma Fermentata had certain limitations.The medical practitioners of Ming Dynasty elucidated the mechanism of processing of Pinelliae Rhizoma Fermentata,and proposed the view of"sliced Pinelliae Rhizoma being potent while fermented Pinelliae Rhizoma being mild".In the Ming Dynasty,LI Shi-Zhen defined the cake-making process and fermentation process for Pinelliae Rhizoma,and HAN Mao's Han Shi Yi Tong(Han's Clear View of Medicine)contained five prescriptions for the processing of Pinelliae Rhizoma Fermentata,which had the epoch-making signficance in the expansion of prescriptions for the processing of Pinelliae Rhizoma Fermentata.In the Qing Dynasty,HAN Fei-Xia's ten methods for making Pinelliae Rhizoma Fermentata were summarized on the basis of the methods recorded in Han Shi Yi Tong,and at that time,the processing of Pinelliae Rhizoma Fermentata and the preparation of Massa Medicata Fermentata interacted with each other.After the founding of the People's Republic of China,the local experience in the preparation of Pinelliae Rhizoma Fermentata was deeply influenced by the methods in the Qing Dynasty,and the local preparation technical standards gradually became the same.Moreover,this article also explored the issues of the importance of"Pinelliae Rhizoma"and"ingredients for fermentation",the pre-treatment of Pinelliae Rhizoma,the distinction between cake-making process and fermentation process for Pinelliae Rhizoma,the amount of flour added as well as the timing of adding,the addition of Massa Medicata Fermentata powder,the role of Alum in Pinelliae Rhizoma Fermentata and so on.
		                        		
		                        		
		                        		
		                        	
6.Scutellarin inhibitting BV-2 microglia-mediated neuroinflammation via the cyclic GMP-AMP synthase-stimulator of interferon gene pathway
Zhao-Da DUAN ; Li YANG ; Hao-Lun CHEN ; Teng-Teng LIU ; Li-Yang ZHENG ; Dong-Yao XU ; Chun-Yun WU
Acta Anatomica Sinica 2024;55(2):133-142
		                        		
		                        			
		                        			Objective To explore the effect of scutellarin on lipopolysaccharide(LPS)induced neuroinflammation in BV-2 microglia cells.Methods BV-2 microglia were cultured and randomly divided into 6 groups:control group(Ctrl),cyclic GMP-AMP synthetase(cGAS)inhibitor RU320521 group(RU.521 group),LPS group,LPS+RU.521 group,LPS+scutellarin pretreatment group(LPS+S)and LPS+S+RU.521 group.The expressions of cGAS,stimulator of interferon gene(STING),nuclear factor kappa B(NF-κB),phosphorylated NF-κB(p-NF-κB),neuroinflammatory factors PYD domains-containing protein 3(NLRP3)and tumor necrosis factor α(TNF-α)in BV-2 microglia were detected by Western blotting and immunofluorescent double staining(n= 3).Results Western blotting and immunofluorescent double staining showed that compared with the control group,the expression of cGAS,STING,p-NF-κB,NLRP3 and TNF-α in BV-2 microglia increased significantly after LPS induction(P<0.05),while the expression of cGAS,STING,p-NF-κB,NLRP3 and TNF-α in LPS+S group were significantly lower than those in LPS group(P<0.05).Treatment with cGAS pathway inhibitor RU.521 showed similar effects as the pre-treatment group with scutellarin.In addition,the change of NF-κB in each group was not statistically significant(P>0.05).Conclusion Scutellarin inhibits the neuroinflammation mediated by BV-2 microglia cells,which may be related to cGAS-STING signaling pathway.
		                        		
		                        		
		                        		
		                        	
7.Survey on the current status of Helicobacter pylori infection and related risk factors in Haikou city
Xiao-Dong ZHANG ; Da-Ya ZHANG ; Shi-Ju CHEN ; Run-Xiang CHEN ; Yan ZHOU ; Ling WEI ; Chang-Jiang LIU ; Yun-Qian XIE ; Fei-Hu BAI
Modern Interventional Diagnosis and Treatment in Gastroenterology 2024;29(4):393-397
		                        		
		                        			
		                        			Objective To explore the relevant risk factors of H.pylori infection,and provide reference for prevention and treatment of H.pylori in this area,and further provide theoretical basis for the prevention and treatment of gastric cancer.Methods A total of 1200 residents in four districts of Haikou city were investigated by questionnaire and urea 14 C breath test by holistic stratified random sampling to calculate the population infection rate and analyze the risk factors of infection.Results The total infection rate was 32.5%,which was lower than the national H.pylori infection rate.No consumption of fruits and vegetables,no habit of washing hands before meals,and people with gastrointestinal symptoms,are independent risk factors of H.pylori infection.No consumption of pickled products is of great significance to prevent H.pylori infection.Conclusion The prevalence of H.pylori infection in the population of Haikou is lower than the national average,and H.pylori infection is closely related to the poor living habits of residents.
		                        		
		                        		
		                        		
		                        	
8.Role of Glucose-6-phosphate Dehydrogenase in Viral Infection
Dong-Xue CHEN ; Yun-Long LI ; Da-Qiao WEI ; Fen HUANG
Progress in Biochemistry and Biophysics 2024;51(8):1788-1796
		                        		
		                        			
		                        			Glucose-6-phosphate dehydrogenase (G6PD) is the first rate-limiting enzyme of the pentose phosphate pathway, which regulates the production of nicotinamide adenine dinucleotide phosphate (NADPH) in cells, and plays an important role in redox reactions. In addition, NADPH is necessary for biosynthesis reactions and is an essential hydrogen donor in the biosynthesis of cholesterol, fatty acids, and sex hormones. NADPH also plays an important role in maintaining intracellular redox homeostasis, converting intracellular oxidized glutathione into reduced glutathione (GSH), which is the main intracellular antioxidant. Therefore, G6PD plays an important role in maintaining intracellular redox homeostasis. Studies have shown that the decrease in G6PD activity can lead to a breakdown of the redox balance in the cells and tends to the oxidation state, which not only leads to dysregulation of cell growth and signaling, but also makes the host more susceptible to viruses. Previous studies have focused on the molecular characteristics of G6PD, anemia caused by G6PD deficiency, and the relationship between malignant tumors and G6PD. In recent years, more attentions have been paid to the importance of G6PD at the cellular level, development, and disease progression. To explore the effects of G6PD on viral life cycle, the relationship between G6PD and viral infections, including the clinical symptoms and virus-host interactions of hepatitis B virus (HBV), human papilloma virus (HPV), hepatitis E virus (HEV), influenza virus and dengue fever virus (DENV) will be reviewed, which will benefit the antiviral drugs development. Many studies had proved that patients with deficient G6PD are more susceptible to HBV infection. It has been reported that HBV infection activates the glycolytic pathway, promotes pentose phosphate pathway, and accelerates citric acid cycle to enhance nucleotide and fat biosynthesis, thereby promoting viral replication. During HPV infection, miR-206 up-regulates the expression of G6PD to facilitate viral replication. Thus, G6PD may be a new target for anti-cervical cancer therapy. It was reported that patients with G6PD deficiency are more susceptible to HEV infection, and more serious HEV infection-associated diseases are developed. However, the mechanism of why and how the deficiency of G6PD affect HEV infection is still unclear. The oxidative stress caused by G6PD deficiency provides a suitable environment for influenza virus replication. Furthermore, patients with G6PD deficiency are more susceptible to SARS-CoV-2 infection and lead to more severe clinical symptoms with a higher risk of thrombosis and hemolysis than general population. There is a correlation between DENV infection and G6PD deficiency, which increase the risk of hemolysis, however, the pathogenesis is still unknown. The deficiency of G6PD promotes HCoV 229E infection, possibly because the NF-κB signal pathway is suppressed when G6PD deficiency, which results in decreased innate antiviral immune, and increased susceptibility to HCoV 229E, finally leads to increased viral replication. Thus, the deficiency of G6PD play an important role during viruses’ infection, especially the susceptibility. More studies should be performed on the relicationship between G6PD deficiency and specific viral susceptibility, and more attentions shoud be paid to G6PD deficient patients, which will benefit the treatment of viral infection and the development of antiviral drugs. 
		                        		
		                        		
		                        		
		                        	
9.Advancements in the identification of adducts of drug-human serum albumin
Xiao-yun LIU ; Xing-xing DIAO ; Da-fang ZHONG
Acta Pharmaceutica Sinica 2024;59(4):886-898
		                        		
		                        			
		                        			 The covalent binding of drugs and their metabolites to proteins forms drug-protein adducts, which may cause adverse reactions in the body. The development of adductomics technology is helpful for the identification of covalent adducts between drugs and human plasma proteins. For many drugs, such as beta-lactam antibiotics, acyl glucuronides, covalent tyrosine kinases inhibitors, and reactive metabolites, human serum albumin (HSA) is a potential target and biomarker for the formation of drug-protein adducts. In this review, we will describe the relevant technical advances, describe the methods for the identification of covalent adducts of drugs and HSA, define the chemical reactions that form adducts, and preliminarily explore the role of drug-HSA adducts in adverse drug reactions and the potential effect on pharmacokinetics. 
		                        		
		                        		
		                        		
		                        	
10.PRMT7 Regulates Adipogenic Differentiation of hBMSCs by Modulating IGF-1 Signaling
Qian GUO ; Jia QING ; Da-Zhuang LU ; Xu WANG ; Yang LI ; Hui ZHANG ; Ying-Fei ZHANG ; Yun-Song LIU ; Yong-Sheng ZHOU ; Ping ZHANG
Progress in Biochemistry and Biophysics 2024;51(6):1406-1417
		                        		
		                        			
		                        			ObjectiveProtein arginine methyltransferases (PRMTs) play pivotal roles in numerous cellular biological processes. However, the precise regulatory effects of PRMTs on the fate determination of mesenchymal stromal/stem cells (MSCs) remain elusive. Our previous studies have shed light on the regulatory role and molecular mechanism of PRMT5 in MSC osteogenic differentiation. This study aims to clarify the role and corresponding regulatory mechanism of PRMT7 during the adipogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Methods(1) Human bone marrow-derived mesenchymal stem cells (hBMSCs) were cultured in a medium that induces adipogenesis. We used qRT-PCR and Western blot to monitor changes in PRMT7 expression during adipogenic differentiation. (2) We created a cell line with PRMT7 knocked down and assessed changes in PRMT7 expression and adipogenic capacity using Oil Red O staining, qRT-PCR and Western blot. (3) We implanted hBMSCs cell lines mixed with a collagen membrane subcutaneously into nude mice and performed Oil Red O staining to observe ectopic lipogenesis in vivo. (4) A cell line overexpressing PRMT7 was generated, and we examined changes in PRMT7 expression using qRT-PCR and Western blot. We also performed Oil Red O staining and quantitative analysis after inducing the cells in lipogenic medium. Additionally, we assessed changes in PPARγ expression. (5) We investigated changes in insulin-like growth factor 1 (IGF-1) expression in both PRMT7 knockdown and overexpressing cell lines using qRT-PCR and Western blot, to understand PRMT7’s regulatory effect on IGF-1 expression. siIGF-1 was transfected into the PRMT7 knockdown cell line to inhibit IGF-1 expression, and knockdown efficiency was confirmed. Then, we induced cells from the control and knockdown groups transfected with siIGF-1 in lipogenic medium and performed Oil Red O staining and quantitative analysis. Finally, we assessed PPARγ expression to explore IGF-1’s involvement in PRMT7’s regulation of adipogenic differentiation in hBMSCs. Results(1) During the adipogenesis process of hBMSCs, the expression level of PRMT7 was significantly reduced (P<0.01). (2) The adipogenic differentiation ability of PRMT7 knockdown group was significantly stronger than that of control group (P<0.001). (3) The ectopic adipogenic differentiation ability of PRMT7 knockdown group was significantly stronger than that of control group. (4) The adipogenic differentiation ability of the PRMT7 overexpression group was significantly weaker than that of the control group (P<0.01). (5) The expression level of IGF-1 increased after PRMT7 knockdown (P<0.000 1). The expression level of IGF-1 decreased after PRMT7 overexpression (P<0.000 1), indicating that PRMT7 regulates the expression of IGF-1. After siIGF-1 transfection, the expression level of IGF-1 in all cell lines decreased significantly (P<0.001). The ability of adipogenic differentiation of knockdown group transfected with siIGF-1 was significantly reduced (P<0.01), indicating that IGF-1 affects the regulation of PRMT7 on adipogenic differentiation of hBMSCs. ConclusionIn this investigation, our findings elucidate the inhibitory role of PRMT7 in the adipogenic differentiation of hBMSCs, as demonstrated through both in vitro cell-level experiments and in vivo subcutaneous transplantation experiments conducted in nude mice. Mechanistic exploration revealed that PRMT7’s regulatory effect on the adipogenic differentiation of hBMSCs operates via modulation of IGF-1 signaling pathway. These collective findings underscore PRMT7 as a potential therapeutic target for fatty metabolic disorders, thereby offering a novel avenue for leveraging PRMT7 and hBMSCs in the therapeutic landscape of relevant diseases. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail