1.Effects of different nucleus chopping methods on cornea and tear inflammatory indicators in patients with hard nucleus cataract
Li JIANG ; Lei YANG ; Yuanyuan ZHONG ; Furong LIAO ; Yumeng BAO ; Pengcheng ZHANG
International Eye Science 2025;25(6):951-957
AIM: To compare the effects of different nucleus chopping methods on the central corneal thickness, corneal endothelial cell(CEC)count and tear inflammatory indicators in patients with hard nucleus cataract.METHODS: Retrospective study. Totally 89 patients(89 eyes)with hard nucleus cataract who treated in our hospital were included from January 2020 to December 2022. According to different intraoperative nucleus chopping methods, the patients were divided into reverse prechop group(46 eyes)and phaco-chop group(43 eyes). The total effective rate of surgery and visual acuity recovery were compared between the two groups. Corneal related indicators(central corneal thickness, CEC count, CEC area), tear inflammatory indicators and tear film function [tear film break-up time(BUT), Chinese Dry Eye Questionnaire(CDEQ), Schirmer Ⅰ test(SⅠt)] were observed before and after surgery in both groups, and the degree of corneal edema was evaluated.RESULTS: The effective phaco time, phaco energy and cumulative complex energy parameters in the phaco-chop group were longer or higher than those in the reverse prechop group(P<0.05). The macular retinal thickness in the reverse prechop group at 7 d and 1 mo after surgery was thinner than that in the phaco-chop group, the central corneal thickness at 3 and 7 d after surgery was also thinner than that in the phaco-chop group, the CEC count at 3 mo after surgery was more than that in the phaco-chop group, the CEC loss rate was lower than that in the phaco-chop group, and the CEC area at 3 mo after surgery was smaller than that in the phaco-chop group(P<0.05). The levels of tear TNF-α and IL-6 at 7 d and 1 mo after surgery in the reverse prechop group were lower than those in the phaco-chop group(P<0.05). The BUT at 1 and 3 mo after surgery was longer in the reverse prechop group than that in the phaco-chop group(P<0.05). The CDEQ score in the reverse prechop group was lower than that in the phaco-chop group at 1 and 3 mo after surgery(P<0.05). The SⅠt at 1 and 3 mo after surgery was higher in the reverse prechop group compared with that in the phaco-chop group(P<0.05). The degree of corneal edema at 1 d after surgery was milder in the reverse prechop group than that in the phaco-chop group(P<0.05). CONCLUSION: Compared with phaco-chop, the application of reverse-chopper prechop combined with phacoemulsification can better reduce the ultrasonic energy in the treatment of hard nuclear cataract, and it is more conducive to reducing the postoperative inflammatory degree, improving the tear film function and relieving the corneal edema degree.
2.Sema3A secreted by sensory nerve induces bone formation under mechanical loads.
Hongxiang MEI ; Zhengzheng LI ; Qinyi LV ; Xingjian LI ; Yumeng WU ; Qingchen FENG ; Zhishen JIANG ; Yimei ZHOU ; Yule ZHENG ; Ziqi GAO ; Jiawei ZHOU ; Chen JIANG ; Shishu HUANG ; Juan LI
International Journal of Oral Science 2024;16(1):5-5
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A (Sema3A), expressed by sensory nerves, in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement (OTM) model. Firstly, bone formation was activated after the 3rd day of OTM, coinciding with a decrease in sensory nerves and an increase in pain threshold. Sema3A, rather than nerve growth factor (NGF), highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM. Moreover, in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells (hPDLCs) within 24 hours. Furthermore, exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload. Mechanistically, Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway, maintaining mitochondrial dynamics as mitochondrial fusion. Therefore, Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation, both as a pain-sensitive analgesic and a positive regulator for bone formation.
Humans
;
Bone Remodeling
;
Cell Differentiation
;
Osteogenesis
;
Semaphorin-3A/pharmacology*
;
Trigeminal Ganglion/metabolism*
3.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
4.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
5.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
6.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
7.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
8.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
9.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
10.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.

Result Analysis
Print
Save
E-mail