1.Construction and application of a deep learning-based assistant system for corneal in vivo confocal microscopy images recognition
Yulin YAN ; Weiyan JIANG ; Simin CHENG ; Yiwen ZHOU ; Yi YU ; Biqing ZHENG ; Yanning YANG
Chinese Journal of Experimental Ophthalmology 2024;42(2):129-135
Objective:To construct an artificial intelligence (AI)-assisted system based on deep learning for corneal in vivo confocal microscopy (IVCM) image recognition and to evaluate its value in clinical applications. Methods:A diagnostic study was conducted.A total of 18 860 corneal images were collected from 331 subjects who underwent IVCM examination at Renmin Hospital of Wuhan University and Zhongnan Hospital of Wuhan University from May 2021 to September 2022.The collected images were used for model training and testing after being reviewed and classified by corneal experts.The model design included a low-quality image filtering model, a corneal image diagnosis model, and a 4-layer identification model for corneal epithelium, Bowman membrane, stroma, and endothelium, to initially determine normal and abnormal corneal images and corresponding corneal layers.A human-machine competition was conducted with another 360 database-independent IVCM images to compare the accuracy and time spent on image recognition by three senior ophthalmologists and the AI system.In addition, 8 trainees without IVCM training and with less than three years of clinical experience were selected to recognize the same 360 images without and with model assistance to analyze the effectiveness of model assistance.This study adhered to the Declaration of Helsinki.The study protocol was approved by the Ethics Committee of Renmin Hospital of Wuhan University (No.WDRY2021-K148).Results:The accuracy of this diagnostic model in screening high-quality images was 0.954.Its overall accuracy in identifying normal/abnormal corneal images was 0.916 and 0.896 in the internal and external test sets, respectively.Its accuracy reached 0.983, 0.925 in the internal test sets and 0.988, 0.929 in the external test sets in identifying corneal layers of normal and abnormal images, respectively.In the human-machine competition, the overall recognition accuracy of the model was 0.878, which was similar to the average accuracy of the three senior physicians and was approximately 300 times faster than the experts in recognition speed.Trainees assisted by the system achieved an accuracy of 0.816±0.043 in identifying corneal layers of normal and abnormal images, which was significantly higher than 0.669±0.061 without model assistance ( t=6.304, P<0.001). Conclusions:A deep learning-based assistant system for corneal IVCM image recognition is successfully constructed.This system can discriminate normal/abnormal corneal images and diagnose the corresponding corneal layer of the images, which can improve the efficiency of clinical diagnosis and assist doctors in training and learning.
2.Paeoniflorin Induces Apoptosis in NSCLC Cells via Activating Hippo Signaling Pathway
Yan LI ; Liang PENG ; Lifeng JIANG ; Sheng WANG ; Ge WANG ; Xiaolin YU ; Yulin YAO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(12):39-44
ObjectiveTo observe the apoptosis induced by paeoniflorin (PF) in non-small cell lung cancer (NSCLC) cells and explore its mechanism. MethodCell counting kit-8 (CCK-8) was used to detect the inhibition rates of H1299, H292 and A549 cells with different concentrations of PF (2.5, 5, 10, 20, 25 µmol·L-1), and to screen suitable concentrations of PF and experimental cells. The inhibitory effect of PF on lung cancer cells was detected by clone formation assay. The effect of PF on cell apoptosis was detected by flow cytometry with annexin V-FITC/propidium iodide (PI) double staining. With the right concentration of drugs, levels of apoptosis-associated protein B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), cleaved Caspase-3 and Caspase-3 were detected by Western blot. At the same time, the molecular expressions of hypoxia inducible factor -1α (HIF-1α) and Hippo signaling pathway were determined. ResultCompared with the blank group, PF significantly inhibited the growth of H1299, H292 and A549 cells of human lung cancer (P<0.01). PF significantly induced apoptosis in A549 cells (P<0.01), decreased the Bcl-2/Bax ratio (P<0.01), and significantly increased the cleaved Caspase-3 expression (P<0.01). Compared with those in the blank group, the expression levels of HIF-1α, transcriptional coactivator with PDZ-binding motif (TAZ), large tumor suppressor 1 (LATS1), Mps one binding 1 (MOB1) and Yes-associated protein (YAP) in A549 cells of the PF treatment group were significantly decreased (P<0.01), while the expressions of p-LATS1, p-MOB1 and p-YAP were significantly increased (P<0.01). At the same time, there was no significant effect on the expression levels of phosphorylated mammalian Ste20-like kinase 1 (p-MST1) and MST1, which did not reach a statistical difference. ConclusionAll data demonstrated that PF showed an anti-tumor effect by improving hypoxic conditions and inhibiting the abnormally activated Hippo signaling pathway, thereby inducing and promoting apoptosis in non-small cell lung cancer.
3.Carrier screening for 223 monogenic diseases in Chinese population:a multi-center study in 33 104 individuals
Wei HOU ; Xiaolin FU ; Xiaoxiao XIE ; Chunyan ZHANG ; Jiaxin BIAN ; Xiao MAO ; Juan WEN ; Chunyu LUO ; Hua JIN ; Qian ZHU ; Qingwei QI ; Yeqing QIAN ; Jing YUAN ; Yanyan ZHAO ; Ailan YIN ; Shutie LI ; Yulin JIANG ; Manli ZHANG ; Rui XIAO ; Yanping LU
Journal of Southern Medical University 2024;44(6):1015-1023
Objective To investigate the epidemiological characteristics and mutation spectrum of monogenic diseases in Chinese population through a large-scale,multicenter carrier screening.Methods This study was conducted among a total of 33 104 participants(16 610 females)from 12 clinical centers across China.Carrier status for 223 genes was analyzed using high-throughput sequencing and different PCR methods.Results The overall combined carrier frequency was 55.58%for 197 autosomal genes and 1.84%for 26 X-linked genes in these participants.Among the 16 669 families,874 at-risk couples(5.24%)were identified.Specifically,584 couples(3.50%)were at risk for autosomal genes,306(1.84%)for X-linked genes,and 16 for both autosomal and X-linked genes.The most frequently detected autosomal at-risk genes included GJB2(autosomal recessive deafness type 1A,393 couples),HBA1/HBA2(α-thalassemia,36 couples),PAH(phenylketonuria,14 couples),and SMN1(spinal muscular atrophy,14 couples).The most frequently detected X-linked at-risk genes were G6PD(G6PD deficiency,236 couples),DMD(Duchenne muscular dystrophy,23 couples),and FMR1(fragile X syndrome,17 couples).After excluding GJB2 c.109G>A,the detection rate of at-risk couples was 3.91%(651/16 669),which was lowered to 1.72%(287/16 669)after further excluding G6PD.The theoretical incidence rate of severe monogenic birth defects was approximately 4.35‰(72.5/16 669).Screening for a battery of the top 22 most frequent genes in the at-risk couples could detect over 95%of at-risk couples,while screening for the top 54 genes further increased the detection rate to over 99%.Conclusion This study reveals the carrier frequencies of 223 monogenic genetic disorders in the Chinese population and provides evidence for carrier screening strategy development and panel design tailored to the Chinese population.In carrier testing,genetic counseling for specific genes or gene variants can be challenging,and the couples need to be informed of these difficulties before testing and provided with options for not screening these genes or gene variants.
4.Development and performance evaluation of an antioxidant gene-knockout microbial sensor for active monitoring of DNA damage effects
Yue YU ; Anyi LI ; Wenjia WANG ; Hao JIANG ; Yulin DENG ; Xiaoqiong LI ; Xuefei LYU ; Rongji DAI
Space Medicine & Medical Engineering 2024;35(2):73-77
Objective The oxidative damage of DNA can be caused by excessive levels of Reactive oxygen species(ROS).Monitoring of DNA oxidative damage enables effective evaluation of ROS damage effects.Although the detection of DNA damage effects based on microbial sensor allows quantitative analysis of oxidative damage,the ROS clearance mechanism existed in bacterial will affect the sensitive of detection.The work of this article is to knockout the key genes of ROS clearance mechanism and construct an antioxidant gene-knock-out microbial sensor.The microbial sensor can realize sensitive monitoring of DNA damage effects and then evaluates the damage effects of cells by ROS.Methods The antioxidant damage genes of bacterial ahpCF,katE and katG were knocked out by λ-Red homologous recombination and antioxidant gene-knockout microbial sensor was constructed.The nalidixic acid sodium salt and UV irradiation were used to characterize the performance for monitoring of DNA damage effects.Results The antioxidant gene-knockout microbial sensors ΔahpC,ΔahpCF/ΔkatEG and ΔahpCF/ΔkatE/ΔkatG were constructed successfully.The results showed that the microbial sensor ΔahpCF/ΔkatE/ΔkatGl had the highest sensitive of damage effects and the limit of detection for nalidixic acid sodium salt was 0.40 μmol/L.In addition,1.80 min of UV irradiation(254 nm)was sufficient to induce a significant fluorescent expression effect in the engineered bacteria.Conclusion In this article,antioxidant gene-knockout microbial sensors had been constructed to realize active and sensitive monitoring of DNA damage effects such as DNA damage reagents and UV irradiation.The sensors could provide an active,effective,and sensitive potential monitoring method for future evaluation of radiation effects in space.
5.Targeted delivery of rosuvastatin enhances treatment of hyperhomocysteinemia-induced atherosclerosis using macrophage membrane-coated nanoparticles
Liu DAYUE ; Yang ANNING ; Li YULIN ; Li ZHENXIAN ; You PEIDONG ; Zhang HONGWEN ; Quan SHANGKUN ; Sun YUE ; Zeng YALING ; Ma SHENGCHAO ; Xiong JIANTUAN ; Hao YINJU ; Li GUIZHONG ; Liu BIN ; Zhang HUIPING ; Jiang YIDENG
Journal of Pharmaceutical Analysis 2024;14(9):1301-1319
Rosuvastatin(RVS)is an excellent drug with anti-inflammatory and lipid-lowering properties in the aca-demic and medical fields.However,this drug faces a series of challenges when used to treat atherosclerosis caused by hyperhomocysteinemia(HHcy),including high oral dosage,poor targeting,and long-term toxic side effects.In this study,we applied nanotechnology to construct a biomimetic nano-delivery system,macrophage membrane(M?m)-coated RVS-loaded Prussian blue(PB)nanoparticles(MPR NPs),for improving the bioavailability and targeting capacity of RVS,specifically to the plaque lesions associated with HHcy-induced atherosclerosis.In vitro assays demonstrated that MPR NPs effectively inhibited the Toll-like receptor 4(TLR4)/hypoxia-inducible factor-1α(HIF-1α)/nucleotide-binding and oligomerization domain(NOD)-like receptor thermal protein domain associated protein 3(NLRP3)signaling pathways,reducing pyroptosis and inflammatory response in macrophages.Additionally,MPR NPs reversed the abnormal distribution of adenosine triphosphate(ATP)-binding cassette transporter A1(ABCA1)/ATP binding cassette transporter G1(ABCA1)/ATP binding cassette transporter G1(ABCG1)caused by HIF-1α,promoting cholesterol efflux and reducing lipid deposition.In vivo studies using apolipoprotein E knockout(ApoE-/-)mice confirmed the strong efficacy of MPR NPs in treating atherosclerosis with favorable bio-security,and the mechanism behind this efficacy is believed to involve the regulation of serum metabolism and the remodeling of gut microbes.These findings suggest that the synthesis of MPR NPs provides a promising nanosystem for the targeted therapy of HHcy-induced atherosclerosis.
6.Expanded carrier screening for 216 diseases in a cohort of 3 097 healthy Chinese individuals of childbearing age
Na HAO ; Kaili YIN ; Hanzhe ZHANG ; Qingwei QI ; Xiya ZHOU ; Yan LYU ; Yulin JIANG
Chinese Journal of Obstetrics and Gynecology 2024;59(10):764-770
Objective:To determine the carrier frequency and hot-spot variants of a custom-designed expanded carrier screening (ECS) panel with 216 diseases (216-ECS panel) within a Chinese population of childbearing age.Methods:Whole-exome sequencing data from a cohort of 3 097 unrelated healthy individuals (including 1 424 couples) from Peking Union Medical College Hospital between January 2013 and December 2023 were analyzed. Totally 220 genes which inherited in a recessive manner of 216-ECS panel were included in the analysis. The analysis included variant carrier rate, gene carrier rate, cumulative carrier rate, at-risk couple rates, and variant spectrum.Results:(1) Pathogenic variants were identified in 1 472 (47.53%, 1 472/3 097) individuals, with an average of 0.65 pathogenic variants per individual. The rate of at-risk couples was 3.93% (56/1 424). (2) A total of 180 genes were identified, with 16 genes exhibiting a gene carrier rate of ≥1% and 33 genes having a rate of ≥0.5%, most of which were associated with inherited metabolic diseases. Noteworthy genes with higher gene carrier rates and high-frequency variants included GJB2: c.235del, PAH: c.728G>A, ATP7B: c.2333G>T, SLC26A4: c.919-2A>G, GALC: c.1901T>C, POLG: c.2890C>T, SLC22A5: c.1472C>G, USH2A: c.2802T>G, SLC25A13: c.852_855del, GAA: c.761C>T and c.752C>T. Conclusion:This study offers a focused analysis of carrier frequencies and hot-spot variants of 216 diseases of the ECS panel constructed by our laboratory among the Chinese population, laying a foundation for the development of ECS programs tailored to the Chinese population.
7.Expert consensus on the clinical application strategy of NIPT2.0, a new-generation non-invasive prenatal screening technology
Chenming XU ; Chenghong YIN ; Aihua YIN ; Shanling LIU ; Yulin JIANG ; Qiong LUO ; Hua WANG ; Hefeng HUANG
Chinese Journal of Medical Genetics 2024;41(10):1155-1163
The new-generation non-invasive prenatal screening technology (NIPT2.0) is a new method successfully realized in recent years based on high-throughput sequencing to synchronously and accurately detect fetal chromosomal aneuploidies, microdeletion/microduplication syndromes and dominantly inherited monogenic disorders. NIPT2.0 can circumvent the shortcomings of previous non-invasive prenatal screening techniques (NIPT and NIPT Plus) including incapability to detect fetal monogenic disorders, insufficient accuracy of detection and low positive predictive values for certain chromosomal abnormalities (in particular trisomy 13, sex chromosomal abnormalities, and small-segment microdeletions and microduplication syndromes). How to apply NIPT2.0 reasonably and normatively to maximize its clinical value has become an issue which requires clarification. The Reproductive Health Branch of the Chinese Maternal and Child Health Care Association has organized experts to fully discuss and jointly drafted this consensus, which has put forwards suggestions over the clinical application strategy for NIPT2.0, including the scope of application, target disease, pre-test consultation, clinical application pathway, post-test genetic counseling and intervention, quality control and limitations, for the reference by peers, with a view to standardize its application and provide better clinical service.
8.Carrier screening for 223 monogenic diseases in Chinese population:a multi-center study in 33 104 individuals
Wei HOU ; Xiaolin FU ; Xiaoxiao XIE ; Chunyan ZHANG ; Jiaxin BIAN ; Xiao MAO ; Juan WEN ; Chunyu LUO ; Hua JIN ; Qian ZHU ; Qingwei QI ; Yeqing QIAN ; Jing YUAN ; Yanyan ZHAO ; Ailan YIN ; Shutie LI ; Yulin JIANG ; Manli ZHANG ; Rui XIAO ; Yanping LU
Journal of Southern Medical University 2024;44(6):1015-1023
Objective To investigate the epidemiological characteristics and mutation spectrum of monogenic diseases in Chinese population through a large-scale,multicenter carrier screening.Methods This study was conducted among a total of 33 104 participants(16 610 females)from 12 clinical centers across China.Carrier status for 223 genes was analyzed using high-throughput sequencing and different PCR methods.Results The overall combined carrier frequency was 55.58%for 197 autosomal genes and 1.84%for 26 X-linked genes in these participants.Among the 16 669 families,874 at-risk couples(5.24%)were identified.Specifically,584 couples(3.50%)were at risk for autosomal genes,306(1.84%)for X-linked genes,and 16 for both autosomal and X-linked genes.The most frequently detected autosomal at-risk genes included GJB2(autosomal recessive deafness type 1A,393 couples),HBA1/HBA2(α-thalassemia,36 couples),PAH(phenylketonuria,14 couples),and SMN1(spinal muscular atrophy,14 couples).The most frequently detected X-linked at-risk genes were G6PD(G6PD deficiency,236 couples),DMD(Duchenne muscular dystrophy,23 couples),and FMR1(fragile X syndrome,17 couples).After excluding GJB2 c.109G>A,the detection rate of at-risk couples was 3.91%(651/16 669),which was lowered to 1.72%(287/16 669)after further excluding G6PD.The theoretical incidence rate of severe monogenic birth defects was approximately 4.35‰(72.5/16 669).Screening for a battery of the top 22 most frequent genes in the at-risk couples could detect over 95%of at-risk couples,while screening for the top 54 genes further increased the detection rate to over 99%.Conclusion This study reveals the carrier frequencies of 223 monogenic genetic disorders in the Chinese population and provides evidence for carrier screening strategy development and panel design tailored to the Chinese population.In carrier testing,genetic counseling for specific genes or gene variants can be challenging,and the couples need to be informed of these difficulties before testing and provided with options for not screening these genes or gene variants.
9.Construction of an immune-related LncRNA prognostic risk model for gastric cancer based on bioinformatics
Huaji JIANG ; Wei DING ; Yulin TAN ; Lin ZHUANG ; Cheng XI ; Yixin XU ; Yibo WANG ; Xuezhong XU
Chinese Journal of Immunology 2024;40(6):1203-1209
Objective:Based on bioinformatics,new immune-related LncRNAs related to the prognosis of gastric cancer were screened,and a prognostic risk model of immune-related LncRNA was further constructed,in order to be used as a new indicator for early diagnosis and prognostic status of gastric cancer.Methods:The gastric cancer transcriptome data and corresponding clinical prog-nosis data were downloaded from multiple data platforms,and the immune-related LncRNAs of gastric cancer were screened by bioin-formatics methods.Cox regression analysis was used to screen LncRNAs related to immune prognosis in gastric cancer,and LncRNAs related to immune prognosis with independent prognostic significance were identified to construct a prognostic risk model,and the risk score of each patient was calculated.Patients were divided into low-risk and high-risk groups according to the cutpoint.Kaplan-Meier analysis was performed for survival analysis and survival curves were drawn,nomograms were drawn and internal validation was per-formed,and univariate and multivariate Cox regression analysis was performed to analyze the relationship between risk scores and clin-icopathological characteristics and survival prognosis of gastric cancer patients.Results:Three immune prognosis-related LncRNAs(UCA1,MIR4435-1HG,RP11-617F23.1)were identified by Cox regression analysis,and a predictive scoring model was constructed to divide the patients into high-risk group and low-risk group according to the prognosis score.There was a statistically significant dif-ference in the prognosis of patients between the two groups(P<0.05).The multivariate Cox regression analysis risk score was an inde-pendent risk factor for the prognosis of gastric cancer,and the internal verification of the nomogram showed good reliability.Conclu-sion:Three immune-related LncRNAs in gastric cancer are significantly correlated with the prognosis of gastric cancer patients,and the predictive scoring model constructed based on them can effectively predict the prognosis and can be used as their independent prog-nostic biomarkers.
10.Identification of antibody against highly prevalent antigen through serological test and molecular biology technology
Yulin JIANG ; Xiaoping ZOU ; Bujin LIU ; Yun QING ; Haiman ZOU ; Wenjuan HUANG ; Wei MAO
Chinese Journal of Blood Transfusion 2023;36(8):738-740
【Objective】 To identify a case of antibody against highly prevalent antigen through molecular biology technology. 【Methods】 Blood group typing, unexpected antibody identification and cross matching were performed by serological test, and genetic testing of Diego blood group was performed by molecular biology technology. 【Results】 Serological test showed that there was a high prevalence of anti-Dib in the serum of the patient. Gene sequencing showed that the genotype of the patient was Di(a+b-) . Two cases with Di(a+b-) matched with the patient were screened from 856 blood donors. 【Conclusion】 The combined detection method based on serological test supplemented by molecular biology technology is beneficial to the detection of antibody against highly prevalent antigens, and is of great significance for ensuring the safety of clinical blood transfusion.

Result Analysis
Print
Save
E-mail