1.Occupational stress and its effects on depressive symptoms, anxiety symptoms, and sleep in workers of ferrous and non-ferrous metal mining industry in Gansu Province
Yuhong HE ; Haiya ZHANG ; Nan ZHOU ; Jia XU ; Wenli ZHAO
Journal of Environmental and Occupational Medicine 2025;42(4):444-450
Background Due to the unique working environment and numerous occupational disease hazards, workers in mining industry are particularly susceptible to psychological problems such as occupational stress. Objective To understand the current status of occupational stress, depressive symptoms, anxiety symptoms and sleep quality of workers in ferrous and non-ferrous metal mining industry in Gansu Province, and to explore the effects of occupational stress on depressive symptoms, anxiety symptoms, and sleep. Methods From April to December 2022, the workers of 25 large, medium, and small and micro enterprises were selected by stratified cluster random sampling and surveyed in ferrous and non-ferrous metal mining industry in Gansu Province. The Occupational Health Literacy Questionnaire of National Key Population, Core Occupational Stress Scale, Patient Health Questionnaire-q, Generalized Anxiety Disorder, and Self-administer Sleep Questionnaire were used to collect basic information, occupational stress, depressive symptoms, anxiety symptoms, and sleep quality of the workers. Chi-square test was used to compare occupational stress, depressive symptoms, anxiety symptoms and sleep disorders among different categories. Logistic regression model was used to study the effects of occupational stress on depressive symptoms, anxiety symptoms, and sleep quality. Results In this study,
2.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
3.2,3,5,4′-tetrahydroxyldiphenylethylene-2-O-glucoside Attenuates Cerebral Ischemia-reperfusion Injury via PINK1/LETM1 Signaling Pathway
Hongyu ZENG ; Kaimei TAN ; Feng QIU ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Chang LEI ; Hongqing ZHAO ; Yuhong WANG ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):145-154
ObjectiveTo investigate the mechanism by which 2,3,5,4'-tetrahydroxyldiphenylethylene-2-O-glucoside (THSG) mitigates cerebral ischemia/reperfusion (CI/R) injury by regulating mitochondrial calcium overload and promoting mitophagy. MethodsSixty male SD rats were randomized into sham, model, SAS (40 mg·kg-1), and low-, medium- and high-dose (10, 20, 40 mg·kg-1, respectively) THSG groups, with 10 rats in each group. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the modified Longa suture method. An oxygen-glucose deprivation/reoxygenation (OGD/R) model was constructed in PC12 cells. Neurological deficits were assessed via Zea Longa scoring, and cerebral infarct volume was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Structural and functional changes of cortical neurons in MCAO/R rats were assessed by hematoxylin-eosin and Nissl staining. PC12 cell viability was detected by cell counting kit-8 (CCK-8) assay, and mitochondrial calcium levels were quantified by Rhod-2 AM. Immunofluorescence was used to detect co-localization of PTEN-induced kinase 1 (PINK1) and leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) in neurons. Transmission electron microscopy (TEM) was employed to observe mitochondrial morphology in neurons. Western blot was employed to analyze the expression of translocase of outer mitochondrial membrane 20 (TOMM20), autophagy-associated protein p62, microtubule-associated protein light chain 3 (LC3), cysteinyl aspartate-specific proteinase-9 (Caspase-9), B-cell lymphoma 2-associated protein X (Bax), and cytochrome C (Cyt C). ResultsCompared with the sham group, the model group exhibited increased infarct volume (P<0.01) and neurological deficit scores (P<0.01), neuronal structure was disrupted with reduced Nissl bodies. (P<0.01), mitochondrial swelling/fragmentation, decreased PINK1/LETM1 co-localization (P<0.01), upregulated protein levels of LC3Ⅱ/LC3Ⅰ, TOMM20, Caspase-9, Bax, and Cyt C (P<0.01), downregulated protein level of p62 (P<0.05), weakened PC12 viability (P<0.01), and elevated mitochondrial calcium level (P<0.01). Compared with the model group, THSG and SAS groups showed reduced infarct volumes (P<0.05,P<0.01) and neurological deficit scores (P<0.05,P<0.01), mitigated mitochondrial damage, and increased PINK1/LETM1 co-localization (P<0.01). Medium/high-dose THSG and SAS alleviated the neurological damage, increased Nissl bodies (P<0.05,P<0.01), downregulated the protein levels of p62, TOMM20, Caspase-9, Bax, and Cyt C (P<0.05,P<0.01), and elevated the LC3Ⅱ/LC3Ⅰ level (P<0.05,P<0.01). High-dose THSG enhanced PC12 cell viability (P<0.01), increased PINK1/LETM1 co-localization (P<0.01), and reduced mitochondrial calcium (P<0.01). ConclusionTHSG may exert the neuroprotective effect on CI/R injury by activating the PINK1-LETM1 signaling pathway, reducing the mitochondrial calcium overload, and promoting mitophagy.
4.Clinical Application and Mechanism of Buyang Huanwutang in Treatment of Chronic Heart Failure: A Review
Zejun DU ; Linping ZHU ; Xueying WU ; Xiaotong LYU ; Mei ZHAO ; Yuhong LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):286-294
Chronic heart failure (CHF) is a complex clinical syndrome that the cardiac output is not enough to meet the metabolic needs of the body, or depends on the increase of filling pressure to compensate. Its high morbidity and mortality pose a serious threat to human health, necessitating attention and active intervention. At present, western medicine treatment of CHF is mainly based on diuretics, intravenous vasodilators, intravenous positive inotropic drugs, etc., which, however, have problems such as long medication cycles, serious side effects, and limited applicable population. Recent studies have shown that traditional Chinese medicine can act in a multi-pathway, multi-component, and multi-target manner, showing unique advantages in the prevention and treatment of CHF. Buyang Huanwutang has the effects of tonifying Qi, activating blood, and dredging collaterals. Clinical and mechanism studies have confirmed that this prescription is effective in treating CHF and its syndromes. The clinical studies can be classified into two categories. Studies of the first category use simple modern medical diagnostic criteria as the inclusion criteria for CHF patients, which can improve the scientificity and objectivity. Studies of the second category uses modern medicine combined with traditional Chinese medicine disease diagnostic criteria for the screening of CHF patients, which helps to improve the accuracy of efficacy evaluation. However, there are problems such as the lack of unified research standards and the insufficiency of mechanism research. In addition, the available studies remain to be classified or summarized. This study systematically sorted out the clinical and mechanism studies of Buyang Huanwutang in the treatment of CHF in recent years to review the research status. In clinical treatment, Buyang Huanwutang can be used alone, or modified, or combined with other prescriptions or Western medicine. The mechanism studies predict that Buyang Huanwutang can ameliorate CHF by regulating the calcium balance, protecting the mitochondrial structure and function, and regulating intestinal flora. This review aims to provide a theoretical basis and practical guidance for the clinical application and optimization and subsequent in-depth study of Buyang Huanwutang in the treatment of CHF.
5.Modified Xiaoyaosan Alleviates Depression-like Behaviors by Regulating Activation of Hippocampal Microglia Cells in Rat Model of Juvenile Depression
Jiayi SHI ; Yun XIANG ; Ziyang ZHOU ; Dahua WU ; Feng QIU ; Chang LEI ; Hongyu ZENG ; Kaimei TAN ; Hongqing ZHAO ; Dong YANG ; Yuhong WANG ; Pengxiao GUO ; Xiuli ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(5):46-56
ObjectiveTo investigate the mechanism of Baihuan Xiaoyao Decoction (Xiaoyaosan added with Lilii Bulbus and Albiziae Cortex) in alleviating depression-like behaviors of juvenile rats by regulating the polarization of microglia. MethodSixty juvenile SD rats were randomized into normal control, model, fluoxetine, and low-, medium-, and high-dose (5.36, 10.71, 21.42 g·kg-1, respectively) Baihuan Xiaoyao decoction groups. The rat model of juvenile depression was established by chronic unpredictable mild stress (CUMS). The sucrose preference test (SPT) was carried out to examine the sucrose preference of rats. Forced swimming test (FST) was carried out to measure the immobility time of rats. The open field test (OFT) was conducted to measure the total distance, the central distance, the number of horizontal crossings, and the frequency of rearing. Morris water maze (MWM) was used to measure the escape latency and the number of crossing the platform. The immunofluorescence assay was employed to detect the expression of inducible nitric oxide synthase (iNOS, the polarization marker of M1 microglia) and CD206 (the polarization marker of M2 microglia). Real-time polymerase chain reaction was employed to determine the mRNA levels of iNOS, CD206, pro-inflammatory cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6] and anti-inflammatory cytokines (IL-4 and IL-10) in the hippocampus. Western blotting was employed to determine the protein levels of iNOS and CD206 in the hippocampus. The levels of IL-4 and IL-6 in the hippocampus were detected by enzyme-linked immunosorbent assay. ResultCompared with the normal control group, the model rats showed a reduction in sucrose preference (P<0.05), an increase in immobility time (P<0.05), decreased motor and exploratory behaviors (P<0.05), and weakened learning and spatial memory (P<0.05). In addition, the model rats showed up-regulated mRNA and protein levels of iNOS and mRNA levels of IL-1β, IL-6, and TNF-α (P<0.05). Compared with the model group, Baihuan Xiaoyao decoction increased the sucrose preference value (P<0.05), shortened the immobility time (P<0.01), increased the motor and exploratory behaviors (P<0.05), and improved the learning and spatial memory (P<0.01). Furthermore, the decoction down-regulated the positive expression and protein level of iNOS, lowered the levels of TNF-α, IL-1β, and IL-6 (P<0.01), promoted the positive expression of CD206, and elevated the levels of IL-4 and IL-10 (P<0.01) in the hippocampus of the high dose group. Moreover, the high-dose Baihuan Xiaoyao decoction group had higher sucrose preference value (P<0.01), shorter immobility time (P<0.01), longer central distance (P<0.01), stronger learning and spatial memory (P<0.01), higher positive expression and protein level of iNOS (P<0.01), lower levels of TNF-α, IL-1β, and IL-6 (P<0.05, P<0.01), lower positive expression and mRNA level of iNOS (P<0.05), and higher levels of IL-4 and IL-10 (P<0.05, P<0.01) than the fluoxetine group. ConclusionBaihuan Xiaoyao decoction can improve the depression-like behavior of juvenile rats by inhibiting the M1 polarization and promoting the M2 polarization of microglia in the hippocampus.
6.Pathogens of first-episode pulmonary infection in 141 children with chronic granulomatous disease.
Hui LIU ; Shunying ZHAO ; Haiming YANG ; Jinrong LIU ; Hui XU ; Xiaolei TANG ; Yuelin SHEN ; Xiaoyan ZHANG ; Xiaohui WEN ; Yuhong ZHAO ; Ping CHU ; Huimin LI
Chinese Medical Journal 2024;137(4):502-504
7.Effects of long-term exposure to ambient fine particulate matter on diabetes mellitus and the moderating effects of diet
Jinxia WANG ; Yunhao SHI ; Dongshuai WANG ; Xuehao DONG ; Hanqing ZHANG ; Sijie ZHOU ; Yi ZHAO ; Yuhong ZHANG ; Yajuan ZHANG
Journal of Environmental and Occupational Medicine 2024;41(3):259-266
Background Long-term exposure to ambient fine particulate matter (PM2.5) may increase the risk of diabetes, and a healthy diet can effectively control fasting blood glucose levels. However, it is unclear whether dietary factors have a moderating effect on the risk of diabetes associated with atmospheric PM2.5 exposure. Objective To investigate the association between long-term exposure to PM2.5 and diabetes in rural areas of Ningxia, and potential interaction of long-term exposure to atmospheric PM2.5 and diet on diabetes. Methods The study subjects were selected from the baseline survey data of the China Northwest Cohort-Ningxia (CNC-NX) , a natural population cohort. A total of 13917 subjects were included, excluding participants with missing covariate information. We utilized the annual average ambient PM2.5 concentration from 2014 to 2018 as the long-term exposure level. Logistic regression and multiple linear regression were employed to analyze the associations of long-term atmospheric PM2.5 exposure with diabetes and fasting blood glucose levels. Stratification by frequency of vegetable consumption, frequency of fruit consumption, and salty taste was used to examine moderating effects on the diabetes risk associated with atmospheric PM2.5 exposure. Results The mean age of the 13917 subjects was (56.8±10.0) years, and the prevalence of diabetes was 9.8%. Between 2014 and 2018, the average annual concentration of PM2.5 was (38.10±4.67) μg·m−3. The risk (OR) of diabetes was 1.018 (95%CI: 1.005, 1.032) and the fasting blood glucose was increased by 0.011 (95%CI: 0.004, 0.017) mmol·L−1 for each 1 μg·m−3 increase in PM2.5 concentration. Compared to those who consumed vegetables < 1 time per week, individuals who consume vegetables 1-3 times per week and ≥4 times per week had a reduced risk of developing diabetes by 27.1% (OR=0.729, 95%CI: 0.594, 0.893) and 16.8% (OR=0.832, 95%CI: 0.715, 0.971) respectively. Similarly, when compared to those who consumed fruits <1 time per week, individuals who consumed fruits 1-3 times per week and ≥4 times per week exhibited a reduced risk of diabetes by 16.4% (OR=0.836, 95%CI: 0.702, 0.998) and 18.2% (OR=0.818, 95%CI: 0.700, 0.959) respectively. Fasting blood glucose decreased by 0.202 (95%CI: -0.304, -0.101) mmol·L−1 in participants who ate vegetables 1-3 times per week. The effect of salty taste on diabetes and fasting blood glucose was not significant. The results of stratified analysis by dietary factors and PM2.5 concentration showed that the risks of diabetes were increased in the low PM2.5 pollution-low vegetable intake frequency group and the high PM2.5 pollution-low vegetable intake frequency group compared with the low PM2.5 pollution-high vegetable intake frequency group, with OR values of 3.987 (95%CI: 2.943, 5.371) and 1.433 (95%CI: 1.143, 1.796) respectively. The risk of diabetes was 50.1% higher in participants with high PM2.5 pollution and low fruit intake frequency than in participants with low PM2.5 pollution and high fruit intake frequency (OR=1.501, 95%CI: 1.171, 1.926). No interaction was found between salty taste and PM2.5 on diabetes. Conclusion Long-term exposure to ambient PM2.5 is associated with an increased fasting blood glucose and an elevated risk of diabetes in rural Ningxia population. Increasing the frequency of weekly consumption of vegetables or fruits may have a certain protective effect against diabetes occurrence, as well as a moderating effect on diabetes and fasting blood glucose levels associated with long-term exposure to atmospheric PM2.5.
8.A comparative analysis of vaccine immunity induced by heterologous booster with Ad5-nCoV via different routes of administration
Wenxuan MA ; Yuhong HAN ; Ang LIN ; Weijun ZHAO
Journal of China Pharmaceutical University 2024;55(1):137-146
Abstract: Heterologous boost COVID-19 vaccination can solved the problem of decreased efficacy caused by single dose of vaccine. Heterologous booster with adenoviral-vectored COVID-19 vaccine (Ad5-nCoV) following primary immunization with inactivated COVID-19 vaccines is a widely-used vaccination strategy in clinic, while different routes of Ad5-nCoV administration exist and pose a question which route could be more optimal. In this study, we comprehensively evaluated and compared the vaccine immunity induced in mice immunized according to three different vaccination regimens: “3×phosphate buffered solution(3× PBS)”, “2×inactivated vaccine + 1×inactivated vaccine (3×INA)”, “2×inactivated vaccine + 1×Ad5-nCoV (intramuscular)[2×INA+Ad5(im)]”and“2×inactivated vaccine + 1×Ad5-nCoV (intranasal)[2×INA+Ad5(in)]”. We found that heterologous booster with Ad5-nCoV, irrespective of the route of administration, induced significantly higher levels of anti-Spike IgG and subclasses (IgG1and IgG2c), Spike-specific T cells, class-switched Spike+ memory B cells (MBCs) than homologous booster with 3rd dose of inactivated COVID-19 vaccine. Of note, compared with the intramuscular given, intranasal given of Ad5-nCoV as a booster dose clearly induced higher levels of serum and bronchoalveolar bavage fluid anti-spike immunoglobulin A, and moreover, induced stronger infiltration of major innate effector cells like neutrophils, natural killer cells and dendritic cells into the lung tissue, which suggested that mucosal vaccine responses are generated upon intranasal booster with Ad5-nCoV. Altogether, our study analyzed the vaccine immunity induced by different COVID-19 vaccines administered using different regimens, which may guide the clinical use of other types of prophylactic vaccines aiming to mount improved vaccine responses.
9.Clinical efficacy analysis of interventional treatment of iatrogenic massive vaginal bleeding
Shengdong QIN ; Chaodi LI ; Yuhong HOU ; Yanping ZHAO ; Su YAN ; Ruixia GUO ; Xinwei HAN ; Jianhao ZHANG
Journal of Practical Radiology 2024;40(1):103-106
Objective To investigate the clinical efficacy and value of interventional treatment of iatrogenic massive vaginal bleed-ing.Methods Retrospective analysis was performed on 35 patients with postoperative vaginal massive hemorrhage in obstetrics and gynecology who were admitted.Abdominal aorta and bilateral internal iliac arteries angiography and embolization of abnormal vessels were performed under digital subtraction angiography(DS A),and relevant clinical data were recorded and analyzed.Results After interventional treatment,the vaginal bleeding of 33 patients basically stopped within 3 days,and the average interventional operation time was(57.5±17.2)min.The hemoglobin value,hematocrit and blood pressure decreased and the heart rate increased significantly before and after interventional embolization in obstetrics and gynecology,with statistical significance(P<0.05).There were no sig-nificant changes in hemoglobin value and hematocrit between the completion of interventional embolization and 72 hours after interventional embolization(P>0.05).The increase of blood pressure and the decrease of heart rate were statistically significant(P<0.05).Two patients with cesarean section had poor hemostatic effect after interventional embolization,and the bleeding stopped after exploratory laparotomy and hysterectomy.Conclusion Interventional treatment has the advantages of small trauma,simple operation,signifi-cant curative effect,few adverse reactions,and rapid recovery.It plays an important role and clinical value in the diagnosis and treat-ment of iatrogenic vaginal bleeding.
10.Zuogui Jiangtang Jieyu Formula ameliorating hippocampal neuronal apoptosis in diabetic rats with depression by inhibiting JNK signaling pathway
Hongqing ZHAO ; Qingrui MOU ; Jiaqi JIANG ; Xuan ZHU ; Zhuo LIU ; Yuhong WANG
Digital Chinese Medicine 2024;7(2):195-208
Objective To investigate the effect of Zuogui Jiangtang Jieyu Formula(左归降糖解郁方,ZJJF)on hippocampal neuron apoptosis in diabetic rats with depression and to ascertain whether its mechanism involves the regulation of JNK signaling pathway. Methods(i)A total of 72 specific pathogen-free(SPF)grade male Sprague Dawley(SD)rats were randomly divided into six groups,with 12 rats in each group:control,model,metformin(Met,0.18 g/kg)+fluoxetine(Flu,1.8 mg/kg),and the high-,medium-,and low-ZJJF dosages(ZJJF-H,20.52 g/kg;ZJJF-M,10.26 g/kg;ZJJF-L,5.13 g/kg)groups.All groups except control group were injected once via the tail vein with streptozotocin(STZ,38 mg/kg)combined with 28 d of chronic unpredictable mild stress(CUMS)to establish diabetic rat models with de-pression.During the CUMS modeling period,treatments were administered via gavage,with control and model groups receiving an equivalent volume of distilled water for 28 d.The effi-cacy of ZJJF in reducing blood sugar and alleviating depression was evaluated by measuring fasting blood glucose,insulin,and glycated hemoglobin levels,along with behavioral assess-ments,including the open field test(OFT),forced swim test(FST),and sucrose preference test(SPT).Hippocampal tissue damage and neuronal apoptosis were evaluated using hema-toxylin-eosin(HE)staining and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL)staining.Apoptosis-related proteins Bax,Bcl-2,caspase-3,and the ex-pression levels of JNK/Elk-1/c-fos signaling pathway were detected using Western blot and real-time quantitative polymerase chain reaction(RT-qPCR).(ii)To further elucidate the role of JNK signaling pathway in hippocampal neuronal apoptosis and the pharmacological ef-fects of ZJJF,an additional 50 SPF grade male SD rats were randomly divided into five groups,with 10 rats in each group:control,model,SP600125(SP6,a JNK antagonist,10 mg/kg),ZJJF(20.52 g/kg),and ZJJF(20.52 g/kg)+Anisomycin(Aniso,a JNK agonist,15 mg/kg)groups.Ex-cept for control group,all groups were established as diabetic rat models with depression,and treatments were administered via gavage for ZJJF and intraperitoneal injection for SP6 and Aniso for 28 d during the CUMS modeling period.Behavioral changes in rats were evaluated through the OFT,FST,and SPT,and hippocampal neuron damage and apoptosis were ob-served using HE staining,Nissl staining,TUNEL staining,and transmission electron mi-croscopy(TEM).Changes in apoptosis-related proteins and JNK signaling pathway in the hippocampal tissues of rats were also analyzed. Results(i)ZJJF significantly reduced the high blood glucose,insulin,and glycated he-moglobin levels in model rats(P<0.01).It increased autonomous activity and decreased de-spair-like behaviors(P<0.01),improved the pathological damage of hippocampal neurons,increased the number of neuronal nuclei(P<0.01),and reduced the number of mechanocytes,vacuolar cells,and apoptotic neurons(P<0.05,P<0.01,and P<0.01,respec-tively).ZJJF down-regulated the expression levels of pro-apoptotic proteins Bax and caspase-3(P<0.01),up-regulated the anti-apoptotic protein Bcl-2(P<0.01),and significantly inhibit-ed the overexpression of phosphorylated JNK(p-JNK),Elk-1,and c-fos(P<0.01).(ii)SP6 in-creased autonomous activity and reduced despair time in model rats(P<0.05),although it had no significant effects on sucrose preference(P>0.05).It increased the number of Nissl bodies in hippocampal neurons(P<0.01),reduced the protein expression levels of Bax(P<0.01)and caspase-3(P<0.05),and decreased the number of apoptotic neurons(P<0.05).SP6 also increased the expression level of Bcl-2(P<0.01),and inhibited the high expression levels of p-JNK,Elk-1,and c-fos(P<0.01,P<0.01,and P<0.05,respectively),suggesting that hip-pocampal neuronal apoptosis in diabetic rats with depression is associated with abnormal ac-tivation of JNK signaling pathway.Compared with ZJJF group,ZJJF+Aniso group showed a decrease in sucrose preference(P<0.05)and an increase in despair time(P<0.01)with more notable hippocampal neuronal damage.This group also exhibited a decrease in expression level(P<0.01)Bcl-2 and an increase in expression levels of Bax,caspase-3,p-JNK,Elk-1,and c-fos(P<0.01,P<0.05,P<0.05,P<0.01,and P<0.05,respectively),indicating that the antidepressant effects of ZJJF,its improvement of neuronal apoptosis,and regulation of JNK signaling molecules could all be reversed by a specific JNK agonist. Conclusion ZJJF exerts a significant hypoglycemic effect and ameliorates the apoptosis of hippocampal neurons by inhibiting the activation of JNK signaling pathway,which is a promising formula for the treatment of diabetic depression in clinical settings.

Result Analysis
Print
Save
E-mail