1.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
2.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
3.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
4.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
5.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
6.Quality evaluation of Xintong granules based on HPLC fingerprint and quantitative analysis of multi-components by single-marker method
Xide YE ; Xiaolong FENG ; Mingguo SHAO ; Linchun WAN ; Zhenyu HU ; Chunyu CHEN ; Yu WU ; Junwen BU ; Yuhang QIAN ; Fanqiang MENG
China Pharmacy 2025;36(15):1866-1870
OBJECTIVE To establish the HPLC fingerprint of Xintong granules and the quantitative analysis of multi- components by single-marker method (QAMS) to determine the contents of 7 components, so as to provide a scientific basis for their quality control. METHODS HPLC method was used to establish the fingerprints for 10 batches of Xintong granules (No. S1- S10), and similarity evaluation, cluster analysis (CA) and partial least squares-discriminant analysis (PLS-DA) were performed. At the same time, the contents of seven components, including puerarin, daidzin, calycosin-7-O- β -D-glucoside, stilbene glycoside, naringin, icariin and tanshinone ⅡA, were determined by QAMS method, and were compared with the results of external standard method. RESULTS A total of 18 common peaks were marked and 7 peaks were identified in the HPLC fingerprints for 10 batches of Xintong granules, namely puerarin (peak 4), daidzin (peak 7), calycosin-7-O-β-D-glucoside (peak 9), stilbene glycoside (peak 10), naringin (peak 12), icariin (peak 17), and tanshinone ⅡA (peak 18); the similarities among them were more than 0.990, and CA and PLS-DA results showed that S4-S5,S8-S10,S1-S3 and S6-S7 were clustered into three categories, respectively. Using naringin as the internal standard, the contents of puerarin, daidzin, calycosin-7-O-β-D-glucoside, stilbene glycoside, icariin and tanshinone ⅡA were determined to be 7.868 1-10.181 2, 1.709 2-2.374 1, 0.285 2-0.326 3, 1.024 1- 1.523 9, 0.140 2-0.290 4, and 0.077 1-0.219 4 mg/g, respectively, by the QAMS. These results showed no significant differences compared to those obtained by the external standard method. CONCLUSIONS Established HPLC fingerprint and QAMS method are convenient, stable and accurate, which can provide a basis for the quality evaluation of Xintong granules.
7.Identification of unknown pollutants in drinking water based on solid-phase extraction and supramolecular solvent extraction
Zixin QIAN ; Yuhang CHEN ; Chao FENG ; Yuanjie LIN ; Qian XU ; Ziwei LIANG ; Xinyu WANG ; Dasheng LU ; Ping XIAO ; Zhijun ZHOU
Journal of Environmental and Occupational Medicine 2025;42(7):854-861
Background With the progression of industrialization, an increasing number of emerging contaminants are entering aquatic environments, posing significant threats to the safety of drinking water. Therefore, establishing a system for identifying unknown hazardous factors and implementing safety warning mechanisms for drinking water is of paramount importance. Among these efforts, non-target screening plays a critical role, but its effectiveness is largely constrained by the scope of coverage of sample pre-treatment methods. Objective To integrate modern chromatography/mass spectrometry techniques with advanced data mining methods to develop a non-discriminatory sample pre-treatment method for comprehensive enrichment of unknown contaminants in drinking water, laying a technical foundation for the discovery and identification of unknown organic hazardous factors in drinking water. Methods A non-discriminatory pre-treatment method based on supramolecular and solid-phase extraction was developed. The final target compounds including 333 pesticides, 194 pharmaceuticals and personal care products (PPCPs), and 59 per- and polyfluoroalkyl substances (PFASs) were used for optimizing the pre-treatment method, confirming its coverage. The impacts of different eluents on the absolute recovery rates of target compounds were compared to select the conditions with the highest recovery for sample pre-treatment. The effects of different supramolecular solvents and salt concentrations on target compound recovery were also evaluated to determine the most suitable solvent and salt concentration. Results The solid-phase extraction elution solvents, supramolecular extraction solvents, and salt concentrations were optimized based on the target compound recovery rates. The optimal recovery conditions were achieved using 2 mL methanol, 2 mL methanol (containing 1% formic acid), 2 mL ethyl acetate, 2 mL dichloromethane, hexanediol supramolecular solvent, and 426 mg salt. The detection method developed based on these conditions showed a good linear relationship for all target compounds in the range of 0.1-100.0 ng·mL−1, with R² > 0.99. The method’s limit of detection ranged from 0.01 ng−1 to 0.95 ng−1, and 95% of target compounds were recovered in the range of 20%-120%, with relative standard deviation (RSD) less than 30%, indicating good precision. Conclusion The combined pre-treatment method of solid-phase extraction and supramolecular solvent extraction can effectively enrich contaminants in drinking water across low, medium, and high polarities, enabling broad-spectrum enrichment of diverse trace contaminants in drinking water. It provides technical support for broad-spectrum, high-throughput screening and identification of organic pollutants in drinking water, and also serves as a reference for establishing urban drinking water public safety warning systems.
8.Compilation Instructions for Expert Consensus on Clinical Application of Dieda Huoxue Capsules
Yuhang MENG ; Jinghua GAO ; Minshan FENG ; Quan JI ; Jin JIN ; Ting CHENG ; Yongyao LI ; Yuanyuan LI ; Xin CUI ; Yanming XIE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(20):177-183
The Compilation Instructions for Expert Consensus on Clinical Application of Dieda Huoxue capsules systematically expound the development methods and evidence-based basis of this consensus. In view of the weak clinical application evidence and ambiguous indications of Dieda Huoxue capsules, the Institute of Basic Research in Clinical Medicine of the China Academy of Chinese Medical Sciences and Wangjing Hospital took the lead and collaborated with 33 experts from 28 medical institutions nationwide. They strictly followed the World Health Organization (WHO) guideline-making norms and the Grading of Recommendations Assessment, Development and Evaluations (GRADE) evidence-grading system and completed the compilation through multidisciplinary cooperation. The workflow included constructing clinical questions (19 items were screened by the nominal group technique), retrieving evidence (from Chinese and English databases and grey literature), assessing safety (integrating drug monitoring data and clinical investigations), and forming recommendations and consensus suggestions (3 recommendations were reached via the GRADE grid method, and 16 consensus suggestions were reached by the majority vote rule). The results indicate that the consensus clearly states that this medicine (Dieda Huoxue capsules) is applicable to conditions like traumatic injury, blood stasis-induced pain, and sudden lumbar sprains. The recommended dose is 6 capsules each time, twice a day. Combining oral administration with external application can enhance the efficacy, and elderly patients should take the medicine at intervals. Safety monitoring suggests that it should be used with caution in people with a bleeding tendency and those with an allergic constitution. The compilation process involved three rounds of reviews by internal and external experts. Literature analysis, the Delphi method, and clinical applicability tests were employed to ensure methodological rigor. The compilation instructions comprehensively present key aspects such as project approval and registration, conflict-of-interest statements, and evidence evaluation through 12 appendices, providing methodological support for the clinical translation of the consensus. In the future, it will be continuously improved through a dynamic revision mechanism.
9.The clinical efficacy of Da Vinci robot versus video-assisted thoracoscopic surgery in the treatment of posterior mediastinal tumors: A retrospective cohort study
Feng WANG ; Yuhang YUAN ; Chenhan WANG ; Wenteng HU ; Li HE ; Wenwen YANG ; Shuo SUN ; Min ZHANG ; Biao HAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(05):695-701
Objective To compare the short-term clinical effects of Da Vinci robot-assisted thoracic surgery (RATS) and video-assisted thoracoscopic surgery (VATS) in the treatment of posterior mediastinal tumors, and to explore the advantages of RATS posterior mediastinal tumor resection. Methods The clinical data of patients who underwent posterior mediastinal tumors resection through the lateral chest approach admitted to the same medical group in the Department of Thoracic Surgery of the First Hospital of Lanzhou University between January 2019 to January 2023 were retrospectively analyzed. According to the different surgical methods, the patients were divided into a RATS group and a VATS group. The clinical data were compared between the two groups. Results A total of 85 patients were included in this study. There were 39 patients in the RATS group, including 25 females and 14 males, with an average age of 47.6±13.0 years, and 46 patients in the VATS group, including 14 males and 32 females, with an average age of 45.3±14.7 years. All patients completed the operation successfully. The hospitalization cost in the RATS group was significantly higher than that in the VATS group (P<0.001), and the white blood cell count and neutrophilic granulocyte percentage on the first day after operation in the RATS group were lower than those in the VATS group, and the differences were statistically significant (P<0.05). The operative time, intraoperative bleeding, postoperative hospital stay, white blood cell count and neutrophil percentage on the third postoperative day, visual analogue scale score on the first and third postoperative days, duration of analgesic pump use, postoperative 12 h oxygen saturation (no oxygen inhalation), postoperative down bed time, total thoracic drainage volume, duration of drainage tube retention, and postoperative complication rates were not statistically different between the two groups (P>0.05). There was no perioperative death, conversion to thoracotomy or serious perioperative complications in both groups. Conclusion RATS resection of posterior mediastinal tumor via lateral thoracic approach is safe and feasible, and its short-term effect is similar to that of VATS via lateral thoracic single-hole approach. It is worth further comparative study to explore its benefit and cost performance.
10.Protective Mechanism of Paeoniflorin on Mice with Ulcerative Colitis Based on AMPK/mTOR Autophagy Pathway
Xin DAI ; Rou LI ; Yang HU ; Yuhang WANG ; Ruizhu ZHAO ; Jiaxuan FENG ; Shilei LOU ; Cong SUN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(3):45-53
ObjectiveTo explore the protective mechanism of paeoniflorin on mice with ulcerative colitis (UC) through the adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) autophagy pathway. MethodUC mouse model was established by allowing mice freely drink 4% DSS, and 56 BALB/c male mice were randomly divided into model group, AMPK inhibitor group (20 mg·kg-1), paeoniflorin (50 mg·kg-1) + inhibitor (20 mg·kg-1) group, and high dose (50 mg·kg-1), medium dose (25 mg·kg-1), and low dose (12.5 mg·kg-1) paeoniflorin groups. After seven days of drug intervention, the protective effect of paeoniflorin on mice with UC was determined by comparing the body weight, disease activity index (DAI) changes, and Hematoxylin-eosin (HE) staining results. Enzyme linked immunosorbent assay (ELISA) was used to detect the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the serum of mice in each group, and immunofluorescence was utilized to detect microtubule-associated protein 1 light chain 3 (LC3) content in the colon, AMPK, mTOR proteins, and their phosphorylated proteins including p-AMPK and p-mTOR in the colon tissue were detected by Western blot, and the mRNA expression levels of AMPK, mTOR, Beclin1, LC3, and p62 were detected by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultCompared with the blank group, the model group showed a decrease in body mass, an increase in DAI score, and severe pathological damage to the colon. The levels of inflammatory factors including TNF-α and IL-6 increased in serum (P<0.01), while the protein levels of LC3 and p-AMPK/AMPK were down-regulated in colon tissue, and those of p-mTOR/mTOR were up-regulated (P<0.01). The mRNA expression levels of AMPK and LC3 were down-regulated, while the mRNA expression levels of mTOR and p62 were up-regulated (P<0.01). Compared with the model group and the paeoniflorin + inhibitor group, the mice treated with paeoniflorin showed an increase in body mass, a decrease in DAI score, a reduction in pathological damage to colon tissue, and a reduction in the levels of inflammatory factors of TNF-α and IL-6 in serum (P<0.05). The protein levels of LC3 and p-AMPK/AMPK in colon tissue were up-regulated, while the protein levels of p-mTOR/mTOR were down-regulated (P<0.01). The mRNA expression levels of AMPK, Beclin1, and LC3 were up-regulated, while the mRNA expression of mTOR and p62 were down-regulated (P<0.01). The colon tissue of the inhibitor group was severely damaged, and the trend of various indicators was completely opposite to that of the high dose paeoniflorin group. ConclusionPaeoniflorin can enhance autophagy and reduce inflammatory damage in mice with UC by activating the AMPK/mTOR signaling pathway and thus play a protective role.

Result Analysis
Print
Save
E-mail