1.FLZ attenuates Parkinson's disease pathological damage by increasing glycoursodeoxycholic acid production via down-regulating Clostridium innocuu m.
Meiyu SHANG ; Jingwen NING ; Caixia ZANG ; Jingwei MA ; Yang YANG ; Yueqi JIANG ; Qiuzhu CHEN ; Yirong DONG ; Jinrong WANG ; Fangfang LI ; Xiuqi BAO ; Dan ZHANG
Acta Pharmaceutica Sinica B 2025;15(2):973-990
Increasing evidence shows that the early lesions of Parkinson's disease (PD) originate from gut, and correction of microbiota dysbiosis is a promising therapy for PD. FLZ is a neuroprotective agent on PD, which has been validated capable of alleviating microbiota dysbiosis in PD mice. However, the detailed mechanisms still need elucidated. Through metabolomics and 16S rRNA analysis, we identified glycoursodeoxycholic acid (GUDCA) was the most affected differential microbial metabolite by FLZ treatment, which was specially and negatively regulated by Clostridium innocuum, a differential microbiota with the strongest correlation to GUDCA production, through inhibiting bile salt hydrolase (BSH) enzyme. The protection of GUDCA on colon and brain were also clarified in PD models, showing that it could activate Nrf2 pathway, further validating that FLZ protected dopaminergic neurons through promoting GUDCA production. Our study uncovered that FLZ improved PD through microbiota-gut-brain axis, and also gave insights into modulation of microbial metabolites may serve as an important strategy for treating PD.
2.Microbial metabolite 3-indolepropionic acid alleviated PD pathologies by decreasing enteric glia cell gliosis via suppressing IL-13Rα1 related signaling pathways.
Meiyu SHANG ; Jingwen NING ; Caixia ZANG ; Jingwei MA ; Yang YANG ; Zhirong WAN ; Jing ZHAO ; Yueqi JIANG ; Qiuzhu CHEN ; Yirong DONG ; Jinrong WANG ; Fangfang LI ; Xiuqi BAO ; Dan ZHANG
Acta Pharmaceutica Sinica B 2025;15(4):2024-2038
Although enteric glial cell (EGC) abnormal activation is reported to be involved in the pathogenesis of Parkinson's disease (PD), and inhibition of EGC gliosis alleviated gut and dopaminergic neuronal dysfunction was verified in our previous study, the potential role of gut microbiota on EGC function in PD still need to be addressed. In the present study, fecal microbiota transplantation revealed that EGC function was regulated by gut microbiota. By employing 16S rRNA and metabolomic analysis, we identified that 3-indolepropionic acid (IPA) was the most affected differential microbial metabolite that regulated EGC gliosis. The protective effects of IPA on PD were validated in rotenone-stimulated EGCs and rotenone (30 mg/kg i.g. for 4 weeks)-induced PD mice, as indicated by decreased inflammation, improved intestinal and brain barrier as well as dopaminergic neuronal function. Mechanistic study showed that IPA targeted pregnane X receptor (PXR) in EGCs, and inhibition of IL-13Rα1 involved cytokine-cytokine receptor interaction pathway, leading to inactivation of downstream JAK1-STAT6 pathway. Our data not only provided evidence that EGC gliosis was critical in spreading intestinal damage to brain, but also highlighted the potential role of microbial metabolite IPA in alleviating PD pathological damages through gut-brain axis.
3.Erratum: Author correction to "Microbial metabolite 3-indolepropionic acid alleviated PD pathologies by decreasing enteric glia cell gliosis via suppressing IL-13Rα1 related signaling pathways" Acta Pharm Sin B 15 (2025) 2024-2038.
Meiyu SHANG ; Jingwen NING ; Caixia ZANG ; Jingwei MA ; Yang YANG ; Zhirong WAN ; Jing ZHAO ; Yueqi JIANG ; Qiuzhu CHEN ; Yirong DONG ; Jinrong WANG ; Fangfang LI ; Xiuqi BAO ; Dan ZHANG
Acta Pharmaceutica Sinica B 2025;15(9):4972-4972
[This corrects the article DOI: 10.1016/j.apsb.2025.02.029.].
4.γδ T cells: Major advances in basic and clinical research in tumor immunotherapy
Yueqi ZHAO ; Peng DONG ; Wei HE ; Jianmin ZHANG ; Hui CHEN
Chinese Medical Journal 2024;137(1):21-33
γδ T cells are a kind of innate immune T cell. They have not attracted sufficient attention because they account for only a small proportion of all immune cells, and many basic factors related to these cells remain unclear. However, in recent years, with the rapid development of tumor immunotherapy, γδ T cells have attracted increasing attention because of their ability to exert cytotoxic effects on most tumor cells without major histocompatibility complex (MHC) restriction. An increasing number of basic studies have focused on the development, antigen recognition, activation, and antitumor immune response of γδ T cells. Additionally, γδ T cell-based immunotherapeutic strategies are being developed, and the number of clinical trials investigating such strategies is increasing. This review mainly summarizes the progress of basic research and the clinical application of γδ T cells in tumor immunotherapy to provide a theoretical basis for further the development of γδ T cell-based strategies in the future.
5.γδ T cells: Major advances in basic and clinical research in tumor immunotherapy.
Yueqi ZHAO ; Peng DONG ; Wei HE ; Jianmin ZHANG ; Hui CHEN
Chinese Medical Journal 2024;137(1):21-33
γδ T cells are a kind of innate immune T cell. They have not attracted sufficient attention because they account for only a small proportion of all immune cells, and many basic factors related to these cells remain unclear. However, in recent years, with the rapid development of tumor immunotherapy, γδ T cells have attracted increasing attention because of their ability to exert cytotoxic effects on most tumor cells without major histocompatibility complex (MHC) restriction. An increasing number of basic studies have focused on the development, antigen recognition, activation, and antitumor immune response of γδ T cells. Additionally, γδ T cell-based immunotherapeutic strategies are being developed, and the number of clinical trials investigating such strategies is increasing. This review mainly summarizes the progress of basic research and the clinical application of γδ T cells in tumor immunotherapy to provide a theoretical basis for further the development of γδ T cell-based strategies in the future.
Humans
;
Receptors, Antigen, T-Cell, gamma-delta
;
Immunotherapy, Adoptive
;
T-Lymphocytes
;
Immunotherapy
;
Neoplasms/therapy*
6.Influence of Didang Xianxiong Decoction on Apoptosis of Podocytes in Diabetes Rats Through PI3K/Akt Signaling Pathway
Kejing ZHANG ; Yueqi WANG ; Quangen CHU ; Jun CHU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(12):62-69
ObjectiveTo observe the protective effect of Didang Xianxiong decoction on the kidneys of diabetic rats, its regulation on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, and its influence on podocyte apoptosis and explore the mechanism of Didang Xianxiong decoction in improving diabetic nephropathy. MethodThe diabetic model was established by a single intraperitoneal injection of streptozotocin (STZ) solution of 55 mg·kg-1. The successfully replicated model rats were randomly divided into the model group, Didang Xianxiong decoction group (8.10 g·kg-1), Xiao Xianxiongtang group (4.05 g·kg-1), Didangtang group (4.05 g·kg-1), and alagebrium (ALT-711) group (3 mg·kg-1), with six rats in each group. In addition, six rats were included in the blank group. After continuous administration for eight weeks, hematoxylin-eosin (HE) staining was used to observe the pathological changes in rats' kidney tissue. Masson staining was used to observe the degree of collagen deposition. Periodic acid-Schiff (PAS) staining was used to observe basement membrane lesions, and immunohistochemistry was used to detect the expression of phosphorylation (p)-PI3K and p-Akt proteins in rats' kidney tissue. The terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) method was used to detect podocyte apoptosis. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of PI3K and Akt in rats' kidney tissue. Western blot was used to detect the protein expression of PI3K, p-PI3K, Akt, p-Akt, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), phosphorylation glycogen synthase kinase-3β (p-GSK-3β), and Caspase-3 in the kidney tissue. ResultCompared with the normal group, the model group had compensatory expansion of glomeruli, proliferation of mesangial cells, a large amount of collagen deposition in the mesangial stroma, thickening of the basement membrane, decreased mRNA expression of PI3K and Akt, and inhibition of PI3K and Akt protein phosphorylation (P<0.01). It also underwent enhanced apoptotic signaling, decreased expression of anti-apoptotic protein Bcl-2 (P<0.01), and increased expression of Bax, p-GSK-3β, and Caspase-3 (P<0.01). Compared with the model group, Didang Xianxiong decoction significantly improved kidney tissue pathology, increased mRNA expression of PI3K and Akt (P<0.01), significantly up-regulated phosphorylation levels of PI3K and Akt proteins (P<0.01) and Bcl-2 expression (P<0.01), downregulated the expression of Bax, p-GSK-3β, and Caspase-3 (P<0.01), and weakened podocyte apoptotic signaling. ConclusionDidang Xianxiong decoction may promote the activation of the PI3K/Akt signaling pathway, inhibit podocyte apoptosis, and thus slow down the progression of diabetic nephropathy.
7.Tim4 deficiency reduces CD301b+macrophage and aggravates periodontitis bone loss
Wang ZIMING ; Zeng HAO ; Wang CAN ; Wang JIAOLONG ; Zhang JING ; Qu SHUYUAN ; Han YUE ; Yang LIU ; Ni YUEQI ; Peng WENAN ; Liu HUAN ; Tang HUA ; Zhao QIN ; Zhang YUFENG
International Journal of Oral Science 2024;16(2):280-292
Periodontitis is a common chronic inflammatory disease that causes the periodontal bone destruction and may ultimately result in tooth loss.With the progression of periodontitis,the osteoimmunology microenvironment in periodontitis is damaged and leads to the formation of pathological alveolar bone resorption.CD301b+macrophages are specific to the osteoimmunology microenvironment,and are emerging as vital booster for conducting bone regeneration.However,the key upstream targets of CD301b+macrophages and their potential mechanism in periodontitis remain elusive.In this study,we concentrated on the role of Tim4,a latent upstream regulator of CD301b+macrophages.We first demonstrated that the transcription level of Timd4(gene name of Tim4)in CD301b+macrophages was significantly upregulated compared to CD301b-macrophages via high-throughput RNA sequencing.Moreover,several Tim4-related functions such as apoptotic cell clearance,phagocytosis and engulfment were positively regulated by CD301b+macrophages.The single-cell RNA sequencing analysis subsequently discovered that Cd301b and Timd4 were specifically co-expressed in macrophages.The following flow cytometric analysis indicated that Tim4 positive expression rates in total macrophages shared highly synchronized dynamic changes with the proportions of CD301b+macrophages as periodontitis progressed.Furthermore,the deficiency of Tim4 in mice decreased CD301b+macrophages and eventually magnified alveolar bone resorption in periodontitis.Additionally,Tim4 controlled the p38 MAPK signaling pathway to ultimately mediate CD301b+macrophages phenotype.In a word,Tim4 might regulate CD301b+macrophages through p38 MAPK signaling pathway in periodontitis,which provided new insights into periodontitis immunoregulation as well as help to develop innovative therapeutic targets and treatment strategies for periodontitis.
8.Genetic analysis of a child with autosomal recessive primary microcephaly due to variant of ASPM gene and a literature review
Jie WANG ; Xiaohua WANG ; Lichun ZHANG ; Yan HUANG ; Rina SHA ; Jin AN ; Yanting WU ; Zhiyuan GUO ; Yueqi JIA
Chinese Journal of Medical Genetics 2024;41(10):1243-1248
Objective:To explore the clinical and genetic characteristics of a child with autosomal recessive primary microcephaly (MCPH).Methods:A case study has been carried out on a boy who had presented at the Inner Mongolia Maternity and Child Health Care Hospital for microcephaly and mental deficiency in September 2022. Prenatal ultrasound images were retrospectively analyzed, and whole exome sequencing and Sanger sequencing were carried out for his family. A literature review was also carried out using keywords such as " ASPM gene", "microcephaly", "prenatal diagnosis", "primary microcephaly", " ASPM", "MCPH5", "MCPH", "autosomal recessive microcephaly", and "prenatal diagnosis on ultrasonography" on the PubMed database, Wanfang Data and China National Knowledge until September 2023. This study was approved by Medical Ethics Committee of the Inner Mongolia Maternity and Child Health Care Hospital (Ethics No. 2021-093-1). Results:The proband had shown progressive reduction in biparietal diameter (BPD) and head circumference (HC) during the fetal period. He was found to harbor compound heterozygous variants of the ASPM gene, which included a paternally derived c. 8044C>T (p.R2682X) and a maternally derived c.8652dup (p.A2885Sfs*35). Both variants were classified as pathogenic (PVS1+ PM2_Supporting+ PP4; PVS1+ PM2_Supporting+ PM3) based on the guidelines from the American College of Medical Genetics and Genomics (ACMG). For other fetuses in his family, prenatal ultrasound and genetic testing were all normal. Literature research has identified 11 relevant articles, which included 14 MCPH cases. All of the MCPH5 cases had shown various degrees of reduced BPD/HC on fetal imaging (100%, 15/15). Developmental delay, intellectual disability, and attention deficits were noted in all survived cases, with one case having seizures (12.5%, 1/8). Their genotypes had included homozygotes (46.2%, 6/13) and compound heterozygotes (53.8%, 7/13) for nonsense variants (45%, 9/20) and frameshifting variants (55%, 11/20). Conclusion:The compound heterozygous variants c. 8044C>T (p.R2682X) and c. 8652dup (p.A2885Sfs*35) of the ASPM gene probably underlay the reduced BPD and HC in this proband with MCPH.
9.γδ T cells: Major advances in basic and clinical research in tumor immunotherapy
Yueqi ZHAO ; Peng DONG ; Wei HE ; Jianmin ZHANG ; Hui CHEN
Chinese Medical Journal 2024;137(1):21-33
γδ T cells are a kind of innate immune T cell. They have not attracted sufficient attention because they account for only a small proportion of all immune cells, and many basic factors related to these cells remain unclear. However, in recent years, with the rapid development of tumor immunotherapy, γδ T cells have attracted increasing attention because of their ability to exert cytotoxic effects on most tumor cells without major histocompatibility complex (MHC) restriction. An increasing number of basic studies have focused on the development, antigen recognition, activation, and antitumor immune response of γδ T cells. Additionally, γδ T cell-based immunotherapeutic strategies are being developed, and the number of clinical trials investigating such strategies is increasing. This review mainly summarizes the progress of basic research and the clinical application of γδ T cells in tumor immunotherapy to provide a theoretical basis for further the development of γδ T cell-based strategies in the future.
10.γδ T cells: Major advances in basic and clinical research in tumor immunotherapy
Yueqi ZHAO ; Peng DONG ; Wei HE ; Jianmin ZHANG ; Hui CHEN
Chinese Medical Journal 2024;137(1):21-33
γδ T cells are a kind of innate immune T cell. They have not attracted sufficient attention because they account for only a small proportion of all immune cells, and many basic factors related to these cells remain unclear. However, in recent years, with the rapid development of tumor immunotherapy, γδ T cells have attracted increasing attention because of their ability to exert cytotoxic effects on most tumor cells without major histocompatibility complex (MHC) restriction. An increasing number of basic studies have focused on the development, antigen recognition, activation, and antitumor immune response of γδ T cells. Additionally, γδ T cell-based immunotherapeutic strategies are being developed, and the number of clinical trials investigating such strategies is increasing. This review mainly summarizes the progress of basic research and the clinical application of γδ T cells in tumor immunotherapy to provide a theoretical basis for further the development of γδ T cell-based strategies in the future.

Result Analysis
Print
Save
E-mail