1.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
2.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
3.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
4.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
5. Effect Xuefu Zhuyu decoction on endothelial-to-mesenchymal transition of pulmonary artery endothelial cells and its mechanism
Zuo-Mei ZENG ; Xin-Yue WANG ; Lei-Yu TIAN ; Li-Dan CUI ; Jian GUO ; Yu-Cai CHEN
Chinese Pharmacological Bulletin 2024;40(1):155-161
Aim To investigate the effect of Xuefu Zhuyu decoction on transforming growth factor-β1(TGF-β1 ) -induced endothelial-to-mesenchymal transition (EndMT) of pulmonary microvascular endothelial cells ( PMVEC), and further analyze the mechanism related to the TGF-β1/Smad signaling pathway. Method To construct an EndMT cell model, PMVEC was treated with TGF-β1 (5 μg · L
6.Novel antibacterial drug target against Gram-negative bacteria: lipopolysaccharide transport protein LptDE and its inhibitors
Yue LI ; Guo-qing LI ; Yuan-yuan TIAN ; Cong-ran LI ; Xin-yi YANG ; Kai-hu YAO ; Xue-fu YOU
Acta Pharmaceutica Sinica 2024;59(2):279-288
The outer membrane composed predominantly of lipopolysaccharide (LPS) is an essential biological barrier for most Gram-negative (G-) bacteria. Lipopolysaccharide transport protein (Lpt) complex LptDE is responsible for the critical final stage of LPS transport and outer membrane assembly. The structure and function of LptDE are highly conserved in most G- bacteria but absent in mammalian cells, and thus LptDE complex is regarded as an attractive antibacterial target. In recent 10 years, the deciphering of the three-dimensional structure of LptDE protein facilities the drug discovery based on such "non
7.Comparison on Rat Models of Acute Cerebral Infarction Due to Stasis Combined with Toxin Complicated with Cerebral-cardiac Syndrome
Mingjiang YAO ; Junyuan LI ; Yue LIU ; Ce CAO ; Guo YUAN ; Lei LI ; Jianxun LIU ; Yunling ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(1):112-119
ObjectiveTo observe and compare the electrocardiogram index, myocardial morphology, and connexin 43 (Cx43) expression of two rat models of acute cerebral infarction (ACI) due to stasis combined with toxin complicated with cerebral-cardiac syndrome (CCS), and to provide experimental evidence for the research on the occurrence mechanism of cardiac diseases induced by ACI and the clinical diagnosis and treatment of CCS. MethodSixty SPF-grade male SD rats were randomized into six groups (n=10): normal , syndrome of stasis combined with toxin induced by carrageenin combined with dry yeast (CA/Y), multi-infarct induced by micro-embolism (ME), middle cerebral artery occlusion (MCAO), CA/Y+ME, and CA/Y+MCAO groups. The model of syndrome of stasis combined with toxin was established by intraperitoneal injection with carrageenan (CA) at 10 mg·kg-1 on the first day and subcutaneous injection with dry yeast (Y) suspension (2 mg·kg-1) on the second day of modeling. Twenty-four hours after the modeling of ACI, the electrocardiograms (ECGs) of rats in each group were collected and the number/percentage (%) of abnormal ECG was calculated. The infarct area of the brain was evaluated by 2,3,5-triphenyltetrazolium chloride (TTC) staining, and myocardial injury was assessed by hematoxylin-eosin (HE) staining. Immumohistochemical staining and Western blot were employed to determine the expression of Cx43 in the myocardium. ResultA certain number of rats in each model group presented abnormal ECG. Compared with the normal group and CA/Y group, CA/Y+MCAO group had the highest rate of abnormal ECG (P<0.01). Compared with the normal, CA/Y, ME, and CA/Y+ME groups, the CA/Y+ME and CA/Y+MCAO groups showed decreased amplitudes of P-wave and T-wave, shortened P-R interval, and extended Q-T interval, which were particularly obvious in the CA/Y+MCAO group (P<0.05, P<0.01) and in accordance with the cerebral infarction area and pathological changes. The expression of Cx43 was up-regulated in both CA/Y+ME and CA/Y+MCAO groups, especially in the CA/Y+MCAO group (P<0.01). ConclusionThe two rat models of ACI due to stasis combined with toxin complicated with CCS can be used to study the mechanism of heart diseases caused by cerebrovascular diseases and the therapeutic effects of Chinese medicines with the functions of resolving stasis and detoxifying. Moreover, the CA/Y+MCAO method has higher abnormal electrocardiogram rate, severer myocardial pathological injury, and higher expression of Cx43 protein. The models can be chosen according to specific experimental purpose.
8.The epidemiology and prediction of brain tumors incidence and mortality in China
Shaoyuan LEI ; Yulong LI ; Fei SUN ; Hongjun LIU ; Yue WU ; Yansu GUO
Basic & Clinical Medicine 2024;44(4):454-458
Objective To describe the incidence and mortality of brain tumors in China in 2020 and to predict the disease burden up to 2040.Methods The brain tumor incidence and mortality in 2020 were recorded based on the data from International Agency for Cancer Research(IARC),Cancer Today database.The incidence and mortality were standardized by age using Segi's world standard population.The burden of brain tumors in 2040 was predicted with assuming that national rates remained constant in 2020.Results It was estimated there were approximately 79 600 new brain tumors cases and 65 200 deaths in China in 2020.The age-standardized incidence and mortality rates of brain tumors in China were 4.1/100 000 and 3.2/100 000,respectively,which were lower than the United States of America,most of European countries and Australia.The incidence and mortality were higher than Africa,central America,and the Caribbean.From 2020 to 2040,the brain tumors cases and deaths are predicted to have an increase as 32.1%and 41.5%respectively.Conclusions The disease burden of brain tumors was still heavy in China.Further studies are urgently needed to clarify the epidemic trend of tissue typing and risk factors of brain tumors,which may support the development of effective prevention strategies.
9.Efficacy Evaluation and Mechanism Research of Qi-Shen-Yi-Zhi Formula in Improving the Learning and Memory Ability of Aβ1-42 Hippocampus Injection Mice
Ziqiang ZHU ; Yunqing LU ; Jiani ZHENG ; Cheng CAO ; Yang CHEN ; Jiaxiang TONG ; Xuan LI ; Sheng GUO ; Jin'ao DUAN ; Yue ZHU
World Science and Technology-Modernization of Traditional Chinese Medicine 2024;26(1):40-47
Objective Evaluation of the effect and mechanism research of Qi-Shen-Yi-Zhi formula on improving learning and memory ability in mice injected with Aβ1-42 in hippocampus.Methods Alzheimer's disease model mice were constructed by injecting β amyloid peptide 1-42 into hippocampus and treated with water extracts of Qi-Shen-Yi-Zhi formula.The cognitive abilities of mice were assessed using Morris water maze and Y maze tests,which measure learning and memory capabilities.HE staining was used to observe the damage and TUNEL method was used to determine apoptosis of hippocampus.Detection of the expression of oxidative factors,inflammatory factors,and related antioxidant proteins and apoptotic proteins in the hippocampal tissue of a mouse model of dementia.Results Both high-dose and low-dose groups of Qi-Shen-Yi-Zhi formula significantly improved cognitive dysfunction in mice injected with Aβ1-42 in hippocampus,and attenuated the damage and apoptosis of the hippocampus.It also inhibited oxidative stress and downregulated the expressions of inflammatory factors IL-6,IL-1β and TNF-a,increased the expression of antioxidant proteins Nrf2 and HO-1,and regulated the expressions of apoptotic proteins Caspase-9,Caspase-3,Bax and Bcl-2.Conclusion Qi-Shen-Yi-Zhi formula improves the learning and memory abilities of mice injected with Aβ1-42 in hippocampus,which might be related to the attenuation of oxidative stress and neuronal inflammation of hippocampus.
10.Researches on Effective Fraction and Mechanism of Lycium Barbarum Leaves on Improving Learning and Memory Abilities of D-Galactose-Induced Subacute Aging Mice
Jiaxiang TONG ; Yang CHEN ; Xuan LI ; Ziqiang ZHU ; Shulan SU ; Sheng GUO ; Hongjie KANG ; Jin'ao DUAN ; Yue ZHU
World Science and Technology-Modernization of Traditional Chinese Medicine 2024;26(1):48-60
Objective To study the effective fraction and mechanism of Lycium barbarum leaves on improving learning and memory ability of subacute aging mice induced by D-galactose injection.Methods The model of subacute aging mice was developed by injection of D-galactose subcutaneously,and different extracts of Lycium barbarum leaves were prepared.The effects of the extracts of Lycium barbarum leaves on the learning and memory ability of model mice were evaluated by Y maze experiment and new object recognition experiment.The pathomorphological changes of hippocampus in mice were observed by hematoxylin-eosin and Nissl staining.The levels of brain-derived neurotrophic factor(BDNF),nerve growth factor(NGF),glial cell line-derived neurotrophic factor(GDNF),tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),interferon-γ(IFN-γ)and interleukin-10(IL-10)in hippocampus of mice were detected by enzyme-linked immunosorbent assay.The activities of superoxide dismutase(SOD)and the contents of glutathione(GSH)and malondialdehyde(MDA)in hippocampus of mice were detected by related assay kits.Detection of apoptosis in the hippocampal region of mouse brain tissue using the TUNEL method.Western blotting analysis was used to detect the expressions of antioxidant proteins Nrf2,HO-1 and apoptotic proteins Caspase-3,Caspase-9 in hippocampus of mice.Results The water extraction part and 80%alcohol precipitation supernatant part of Lycium barbarum leaves significantly improved the learning and memory ability of model mice,improved the pathological damage of hippocampus in mice,increased the number of Nissl bodies in hippocampus of mice,and promoted the expression of neurotrophic factors BDNF,NGF and GDNF,and promoted the expression of neurotrophic factors BDNF,NGF and GDNF.Pro-inflammatory factors TNF-α,IL-1β and IFN-γ expression declines while anti-inflammatory factor IL-10 expression rises.The activity of SOD and the expression of GSH were increased,and the expression of MDA was decreased.Increase the expression of Nrf2 and HO-1 antioxidant proteins;reduce the expression of Caspase-3 and Caspase-9 apoptosis pathway proteins.Inhibition of apoptosis in the hippocampal region of mouse brain tissue using a model.Conclusion The water extracts and 80%alcohol precipitation supernatant extracts of Lycium barbarum leaves are the effective fractions of Lycium barbarum leaves to improve the learning and memory ability of D-galactose-induced subacute aging mice,and its mechanism might be related to the inhibition of neuronal apoptosis caused by oxidative stress and inflammation.

Result Analysis
Print
Save
E-mail