1.Comprehensive analysis of insulin products complex disulfide bonds structure by high resolution mass spectrum
Xin-yue HU ; Xiao-li DING ; Yue SUN ; Hui ZHANG ; Jing LI ; Cheng-gang LINAG
Acta Pharmaceutica Sinica 2024;59(1):188-197
		                        		
		                        			
		                        			 The correct pairing of disulfide bonds maintains the correct folding mode and high-level structure formation of peptides and protein drugs, which is crucial for the quality control of products. In order to ensure that the disulfide bonds are correctly paired, disulfide bond analysis is an essential part of peptides and protein drug characterization. Mass spectrometry can be used to analyze disulfide bonds. However, insulin and its analogues have two pairs of disulfide bonds without restriction enzyme cutting site. Conventional collision-induced dissociation (CID) and high-energy induced cleavage (HCD) cannot accurately locate the complex disulfide bond. In our study, three methods were used to localize the complex disulfide, including enzyme digestion combined with key peptide fragment in source decay (ISD) fragmentation method, enzyme digestion combined with partial reduction alkylation method, intact protein source ISD and electron transfer dissociation (ETD) cleavage method, The applicability of insulin aspart, insulin lispro and insulin glargine were also investigated. This study provides a new way for the quality control of disulfide bonding mode of insulin and its analogues, and also provides a reference for the disulfide bond localization of peptides or proteins containing this complex disulfide bond. 
		                        		
		                        		
		                        		
		                        	
2.Expert consensus on the evaluation and management of dysphagia after oral and maxillofacial tumor surgery
Xiaoying LI ; Moyi SUN ; Wei GUO ; Guiqing LIAO ; Zhangui TANG ; Longjiang LI ; Wei RAN ; Guoxin REN ; Zhijun SUN ; Jian MENG ; Shaoyan LIU ; Wei SHANG ; Jie ZHANG ; Yue HE ; Chunjie LI ; Kai YANG ; Zhongcheng GONG ; Jichen LI ; Qing XI ; Gang LI ; Bing HAN ; Yanping CHEN ; Qun'an CHANG ; Yadong WU ; Huaming MAI ; Jie ZHANG ; Weidong LENG ; Lingyun XIA ; Wei WU ; Xiangming YANG ; Chunyi ZHANG ; Fan YANG ; Yanping WANG ; Tiantian CAO
Journal of Practical Stomatology 2024;40(1):5-14
		                        		
		                        			
		                        			Surgical operation is the main treatment of oral and maxillofacial tumors.Dysphagia is a common postoperative complication.Swal-lowing disorder can not only lead to mis-aspiration,malnutrition,aspiration pneumonia and other serious consequences,but also may cause psychological problems and social communication barriers,affecting the quality of life of the patients.At present,there is no systematic evalua-tion and rehabilitation management plan for the problem of swallowing disorder after oral and maxillofacial tumor surgery in China.Combining the characteristics of postoperative swallowing disorder in patients with oral and maxillofacial tumors,summarizing the clinical experience of ex-perts in the field of tumor and rehabilitation,reviewing and summarizing relevant literature at home and abroad,and through joint discussion and modification,a group of national experts reached this consensus including the core contents of the screening of swallowing disorders,the phased assessment of prognosis and complications,and the implementation plan of comprehensive management such as nutrition management,respiratory management,swallowing function recovery,psychology and nursing during rehabilitation treatment,in order to improve the evalua-tion and rehabilitation of swallowing disorder after oral and maxillofacial tumor surgery in clinic.
		                        		
		                        		
		                        		
		                        	
3.Expert consensus on cryoablation therapy of oral mucosal melanoma
Guoxin REN ; Moyi SUN ; Zhangui TANG ; Longjiang LI ; Jian MENG ; Zhijun SUN ; Shaoyan LIU ; Yue HE ; Wei SHANG ; Gang LI ; Jie ZHNAG ; Heming WU ; Yi LI ; Shaohui HUANG ; Shizhou ZHANG ; Zhongcheng GONG ; Jun WANG ; Anxun WANG ; Zhiyong LI ; Zhiquan HUNAG ; Tong SU ; Jichen LI ; Kai YANG ; Weizhong LI ; Weihong XIE ; Qing XI ; Ke ZHAO ; Yunze XUAN ; Li HUANG ; Chuanzheng SUN ; Bing HAN ; Yanping CHEN ; Wenge CHEN ; Yunteng WU ; Dongliang WEI ; Wei GUO
Journal of Practical Stomatology 2024;40(2):149-155
		                        		
		                        			
		                        			Cryoablation therapy with explicit anti-tumor mechanisms and histopathological manifestations has a long history.A large number of clinical practice has shown that cryoablation therapy is safe and effective,making it an ideal tumor treatment method in theory.Previously,its efficacy and clinical application were constrained by the limitations of refrigerants and refrigeration equipment.With the development of the new generation of cryoablation equipment represented by argon helium knives,significant progress has been made in refrigeration efficien-cy,ablation range,and precise temperature measurement,greatly promoting the progression of tumor cryoablation technology.This consensus systematically summarizes the mechanism of cryoablation technology,indications for oral mucosal melanoma(OMM)cryotherapy,clinical treatment process,adverse reactions and management,cryotherapy combination therapy,etc.,aiming to provide reference for carrying out the standardized cryoablation therapy of OMM.
		                        		
		                        		
		                        		
		                        	
4.Efficacy and feasibility of tunnel esophagogastrostomy to perform proximal gastrectomy
Chao YUE ; Rui PENG ; Guangli SUN ; Liang CHEN ; Haitian WANG ; Weiguo XU ; Wei WEI ; Bin ZHOU ; Xu WEN ; Rongmin GU ; Xuezhi MING ; Huanqiu CHEN ; Gang LI
Chinese Journal of Gastrointestinal Surgery 2024;27(10):1045-1049
		                        		
		                        			
		                        			Objective:To analyze the efficacy and feasibility of performing a new surgical procedure, tunnel esophagogastrostomy, to perform proximal gastrectomy.Methods:The study cohort comprised 10 consecutive patients who had undergone esophagogastrostomy by the tunnel technique in Jiangsu Cancer Hospital between October 2019 and July 2022. All patients were male. Their average age was (64.2±8.1) years and body mass index (25.5±3.2) kg/m2. Nine had upper gastric body adenocarcinoma, the remaining one having signet ring cell carcinoma. TNM staging of the tumors showed that seven were Stage IA, one Stage IB, one Stage IIA, and one Stage IIIA. Briefly, tunnel esophagogastrostomy is performed as follows: After performing a proximal gastrectomy, a rectangular seromuscular flap (3.0 cm × 3.5 cm) is created. The posterior esophageal wall is sutured to the gastric wall at the orad end of the seromuscular flap 5 cm from the stump with three to four stitches. Next, the stump of the esophagus is opened, the posterior esophageal wall is sutured to the gastric mucosa and submucosa, and the anterior esophageal wall is sutured to the full layer of the stomach. Finally, the caudad end of the seromuscular flap is closed. Data on surgical safety, postoperative morbidity, and postoperative reflux esophagitis were analyzed. All enrolled patients completed endoscopic follow-up 1 year and 2 years after surgery.Results:All procedures were completed. They comprised four cases of laparoscopic assisted surgery, four of DaVinci robotic surgery, and two of open surgery. The mean operation time was 212.7±33.2 mins, mean anastomosis time (51.6±5.3) minutes, mean tunnel preparation time (20.0±3.5) minutes, and mean operative blood loss (90.0±51.6) mL. The time to first postoperative passage of flatus was (64.8±11.5) hours. The mean hospital stay after surgery was (9.2±1.7) days. There were no postoperative complications above Clavien-Dindo Grade II. The mean preoperative Reflux Disease Questionnaire score was (3.3± 0.4) before the surgery, (3.8±1.0) 1 month postoperatively, and (3.3±0.4) 12 months postoperatively. All patients underwent endoscopic follow-up; no anastomotic stenoses were found. However, one patient had Grade A reflux esophagitis 1 year after surgery and another Grade B reflux esophagitis 2 years after surgery.Conclusion:Esophagogastrostomy by the tunnel technique is a safe and feasible means of performing proximal gastrectomy.
		                        		
		                        		
		                        		
		                        	
5.Thyroid dosimetry evaluation of two intensity-modulated radiotherapy techniques after modified radical mastectomy for breast cancer
Liyun SUN ; Lei SHEN ; Shunkang ZHANG ; Yue LU ; Gang CHEN
Chinese Journal of Clinical Medicine 2024;31(6):959-965
		                        		
		                        			
		                        			Objective To compare the dosimetric characteristics of thyroid between intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in patients with left-sided breast cancer after modified radical mastectomy. Methods Thirty patients with left-sided breast cancer who underwent adjuvant radiotherapy after modified radical mastectomy at the Huangpu Branch of the Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, from December 2021 to May 2023, were selected as the study subjects, and IMRT and VMAT were used with a target prescription dose of 50 Gy/25 times. The target dose parameters of the two plans, including the mean dose (Dmean) and the dose-volume limit for organs at risk (Vx, x represents dose), were compared. Results The conformity index of VMAT was higher than that of IMRT (P<0.001). Compared with VMAT, IMRT plan significantly reduced the V5、V10、Dmean of heart, the V5 of right lung and the Dmean of right breast, while it significantly increased the V20 of left lung (P<0.001). There was no statistically significant difference in V5 and V10 of the left thyroid between IMRT and VMAT. However, the V20, V30, V40, and Dmean of left and whole thyroid, and the V10 and Dmean of right thyroid were significantly lower in IMRT than those in VMAT (P<0.001). Conclusions Both IMRT and VMAT plans can meet the clinical dosimetric requirements, among which IMRT has lower thyroid exposure dose and is more suitable for patients with high cardiac requirements.
		                        		
		                        		
		                        		
		                        	
6.Respiratory virus infection and its influence on outcome in children with septic shock
Gang LIU ; Chenmei ZHANG ; Ying LI ; Junyi SUN ; Yibing CHENG ; Yuping CHEN ; Zhihua WANG ; Hong REN ; Chunfeng LIU ; Youpeng JIN ; Sen CHEN ; Xiaomin WANG ; Feng XU ; Xiangzhi XU ; Qiujiao ZHU ; Xiangdie WANG ; Xinhui LIU ; Yue LIU ; Yang HU ; Wei WANG ; Qi AI ; Hongxing DANG ; Hengmiao GAO ; Chaonan FAN ; Suyun QIAN
Chinese Journal of Pediatrics 2024;62(3):211-217
		                        		
		                        			
		                        			Objective:To investigate respiratory virus infection in children with septic shock in pediatric care units (PICU) in China and its influence on clinical outcomes.Methods:The clinical data of children with septic shock in children′s PICU from January 2018 to December 2019 in 10 Chinese hospitals were retrospectively collected. They were divided into the pre-COVID-19 and post-COVID-19 groups according to the onset of disease, and the characteristics and composition of respiratory virus in the 2 groups were compared. Matching age, malignant underlying diseases, bacteria, fungi and other viruses, a new database was generated using 1∶1 propensity score matching method. The children were divided into the respiratory virus group and non-respiratory virus group according to the presence or absence of respiratory virus infection; their clinical characteristics, diagnosis, and treatment were compared by t-test, rank sum test and Chi-square test. The correlation between respiratory virus infection and the clinical outcomes was analyzed by logistic regression. Results:A total of 1 247 children with septic shock were included in the study, of them 748 were male; the age was 37 (11, 105) months. In the pre-and post-COVID-19 groups, there were 530 and 717 cases of septic shock, respectively; the positive rate of respiratory virus was 14.9% (79 cases) and 9.8% (70 cases); the seasonal distribution of septic shock was 28.9% (153/530) and 25.9% (185/717) in autumn, and 30.3% (161/530) and 28.3% (203/717) in winter, respectively, and the corresponding positive rates of respiratory viruses were 19.6% (30/153) and 15.7% (29/185) in autumn, and 21.1% (34/161) and 15.3% (31/203) in winter, respectively. The positive rates of influenza virus and adenovirus in the post-COVID-19 group were lower than those in the pre-COVID-19 group (2.1% (15/717) vs. 7.5% (40/530), and 0.7% (5/717) vs. 3.2% (17/530), χ2=21.51 and 11.08, respectively; all P<0.05). Rhinovirus virus were higher than those in the pre-Covid-19 group (1.7% (12/717) vs. 0.2% (1/530), χ2=6.51, P=0.011). After propensity score matching, there were 147 cases in both the respiratory virus group and the non-respiratory virus group. Rate of respiratory failure, acute respiratory distress, rate of disseminated coagulation dysfunction, and immunoglobulin usage of the respiratory virus group were higher than those of non-respiratory virus group (77.6% (114/147) vs. 59.2% (87/147), 17.7% (26/147) vs. 4.1% (6/147), 15.6% (25/147) vs. 4.1% (7/147), and 35.4% (52/147) vs. 21.4% (32/147); χ2=11.07, 14.02, 11.06 and 6.67, all P<0.05); and PICU hospitalization of the former was longer than that of the later (7 (3, 16) vs. 3 (1, 7)d, Z=5.01, P<0.001). Univariate logistic regression analysis showed that the presence of respiratory viral infection was associated with respiratory failure, disseminated coagulation dysfunction, the use of mechanical ventilation, and the use of immunoglobulin and anti-respiratory viral drugs ( OR=2.42, 0.22, 0.25, 0.56 and 1.12, all P<0.05). Conclusions:The composition of respiratory virus infection in children with septic shock is different between pre and post-COVID-19. Respiratory viral infection is associated with organ dysfunction in children with septic shock. Decreasing respiratory viral infection through respiratory protection may improve the clinical outcome of these children.
		                        		
		                        		
		                        		
		                        	
7.A multicenter retrospective study on clinical features and pathogenic composition of septic shock in children
Gang LIU ; Feng XU ; Hong REN ; Chenmei ZHANG ; Ying LI ; Yibing CHENG ; Yuping CHEN ; Hongnian DUAN ; Chunfeng LIU ; Youpeng JIN ; Sen CHEN ; Xiaomin WANG ; Junyi SUN ; Hongxing DANG ; Xiangzhi XU ; Qiujiao ZHU ; Xiangdie WANG ; Xinhui LIU ; Yue LIU ; Yang HU ; Wei WANG ; Qi AI ; Hengmiao GAO ; Chaonan FAN ; Suyun QIAN
Chinese Journal of Pediatrics 2024;62(11):1083-1089
		                        		
		                        			
		                        			Objective:To investigate the clinical features, pathogen composition, and prognosis of septic shock in pediatric intensive care units (PICU) in China.Methods:A multicenter retrospective cohort study. A retrospective analysis was conducted on the clinical data of children with septic shock from 10 hospitals in China between January 2018 and December 2021. The clinical features, pathogen composition, and outcomes were collected. Patients were categorized into malignant tumor and non-malignant tumor groups, as well as survival and mortality groups. T test, Mann Whitney U test or Chi square test were used respectively for comparing clinical characteristics and prognosis between 2 groups. Multiple Logistic regression was used to identify risk factors for mortality. Results:A total of 1 247 children with septic shock were included, with 748 males (59.9%) and the age of 3.1 (0.9, 8.8) years. The in-patient mortality rate was 23.2% (289 cases). The overall pathogen positive rate was 68.2% (851 cases), with 1 229 pathogens identified. Bacterial accounted for 61.4% (754 strains) and virus for 24.8% (305 strains). Among all bacterium, Gram negative bacteria constituted 64.2% (484 strains), with Pseudomonas aeruginosa and Enterobacter being the most common; Gram positive bacteria comprised 35.8% (270 strains), primarily Streptococcus and Staphylococcus species. Influenza virus (86 strains (28.2%)), Epstein-Barr virus (53 strains (17.4%)), and respiratory syncytial virus (46 strains (17.1%)) were the top three viruses. Children with malignant tumors were older and had higher pediatric risk of mortality (PRISM) Ⅲ score, paediatric sequential organ failure assessment (pSOFA) score (7.9 (4.3, 11.8) vs. 2.3 (0.8, 7.5) years old, 22 (16, 26) vs. 16 (10, 24) points, 10 (5, 14) vs. 8 (4, 12) points, Z=11.32, 0.87, 4.00, all P<0.05), and higher pathogen positive rate, and in-hospital mortality (77.7% (240/309) vs. 65.1% (611/938), 29.7% (92/309) vs. 21.0% (197/938), χ2=16.84, 10.04, both P<0.05) compared to the non-tumor group. In the death group, the score of PRISM Ⅲ, pSOFA (16 (22, 29) vs. 14 (10, 20) points, 8 (12, 15) vs. 6 (3, 9) points, Z=4.92, 11.88, both P<0.05) were all higher, and presence of neoplastic disease, positive rate of pathogen and proportion of invasive mechanical ventilation in death group were also all higher than those in survival group (29.7% (87/289) vs. 23.2% (222/958), 77.8% (225/289) vs. 65.4% (626/958), 73.7% (213/289) vs. 50.6% (485/958), χ2=5.72, 16.03, 49.98, all P<0.05). Multiple Logistic regression showed that PRISM Ⅲ, pSOFA, and malignant tumor were the independent risk factors for mortality ( OR=1.04, 1.09, 0.67, 95% CI 1.01-1.05, 1.04-1.12, 0.47-0.94, all P<0.05). Conclusions:Bacterial infection are predominant in pediatric septic shock, but viral infection are also significant. Children with malignancies are more severe and resource consumptive. The overall mortality rate for pediatric septic shock remains high, and mortality are associated with malignant tumor, PRISM Ⅲ and pSOFA scores.
		                        		
		                        		
		                        		
		                        	
8.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
		                        		
		                        			
		                        			Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
		                        		
		                        		
		                        		
		                        	
9.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
		                        		
		                        			
		                        			Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
		                        		
		                        		
		                        		
		                        	
10.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
		                        		
		                        			
		                        			Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail