1.Research advances in the efficacy and safety of ofatumumab in patients with relapsing multiple sclerosis
Journal of Apoplexy and Nervous Diseases 2025;42(1):34-37
		                        		
		                        			
		                        			Ofatumumab is a fully humanized anti-CD20 monoclonal antibody approved for the disease-modifying treatment of multiple sclerosis in the remission stage. Its Fab segment selectively binds to and inhibits CD20 and induces B-cell lysis, thereby controlling disease progression. This article reviews the research advances in the efficacy and safety of ofatumumab in patients with relapsing multiple sclerosis.
		                        		
		                        		
		                        		
		                        	
2.Overview of the amendments and revisions to the General Technical Requirements adopted by the Volume Ⅳ of the Chinese Pharmacopoeia 2025 Edition
ZHANG Jun ; NING Baoming ; WEI Shifeng ; SHEN Haoyu ; SHANG Yue ; ZHU Ran ; XU Xinyi ; CHEN Lei ; LIU Tingting ; MA Shuangcheng
Drug Standards of China 2025;26(1):034-044
		                        		
		                        			
		                        			To introduce the general thinking, guidelines, work objectives and elaboration process of the general technical requirements adopted by volume Ⅳ of the Chinese Pharmacopoeia 2025 Edition, and to summarize and figure out the main characteristics on dosage forms, physico-chemical testing, microbial and biological testing, reference standards and guidelines The newly revised general chapters of pharmacopoeia give full play to the normative and guiding role of the Chinese Pharmacopoeia standard, track the frontier dynamics of international drug regulatory science and the elaboration of monographs, expand the application of state-of-the-art technologies, and steadily promote the harmonization and unification with the ICH guidelines; further enhance the overall capacity of TCM quality control, actively implement the 3 R principles on animal experiments, and practice the concept of environmental-friendly; replace and/or reduce the use of toxic and hazardous reagents, strengthen the requirements of drug safety control This paper aims to provide a full-view perspective for the comprehensive, correct understanding and accurate implementation of general technical requirements included in the Chinese Pharmacopoeia 2025 Edition.
		                        		
		                        		
		                        		
		                        	
3.Comparison of unicondylar knee arthroplasty and high tibial osteotomy in treatment of medial knee osteoarthritis
Lei SHI ; Song SHI ; Yue LU ; Ran TAO ; Hongdong MA
Chinese Journal of Tissue Engineering Research 2025;29(3):503-509
		                        		
		                        			
		                        			BACKGROUND:The treatment of early knee osteoarthritis can be achieved through two knee preservation treatments:Unicondylar knee arthroplasty and high tibial osteotomy.However,further exploration is needed to determine whether there are differences in knee joint recovery between the two knee preservation surgeries at different stages after surgery. OBJECTIVE:To compare the efficacy and related complications of unicondylar knee arthroplasty and high tibial osteotomy in the treatment of varus osteoarthropathy of the knee,and to provide a reference for clinical decision. METHODS:A total of 103 patients with varus osteoarthritis of the knee underwent surgical treatment in the Affiliated Hospital of Nantong University from September 2018 to September 2022 were selected.Among them,86 patients were followed up for more than 1 year.According to different surgical methods,the patients were divided into unicondylar knee arthroplasty group(49 cases)and high tibial osteotomy group(37 cases).Knee function,pain,and line of force correction were evaluated before surgery,4 weeks,3 months,6 months,and 1 year after surgery in both groups.Hospital for special surgery knee score,functional score of Western Ontario and McMaster Universities Osteoarthritis Index,changes of lateral space of the knee joint,range of motion,proprioception(position sense),and postoperative activity recovery speed were evaluated comprehensively. RESULTS AND CONCLUSION:(1)There were no significant differences in preoperative hospital for special surgery knee score,Western Ontario and McMaster Universities Osteoarthritis Index score and lateral knee compartment size between the two groups.(2)The hospital for special surgery knee score of patients undergoing unicondylar knee arthroplasty was better than that of patients undergoing high tibial osteotomy within 4 weeks after surgery(P<0.05).At 3 and 6 months after surgery,compared with the improvement of the two groups,the hospital for special surgery knee score in the unicondylar knee arthroplasty group was lower than that in the high tibial osteotomy group,and the difference was significant(P<0.05).The range of motion flexion value and position perception of patients undergoing high tibial osteotomy were significantly better than those undergoing unicondylar knee arthroplasty 6 months after surgery(P<0.05).(3)The unicondylar knee arthroplasty group was better than the high tibial osteotomy group in terms of the speed of knee movement recovery(P<0.05).(4)However,there was no significant difference between the two groups in the change of hospital for special surgery knee score,range of motion,and the width of lateral knee space during 1-year follow-up.(5)All patients were followed up for more than 1 year,and no adverse complications were found during the follow-up.(6)It is indicated that the short-term effect of knee functional recovery in patients with high tibial osteotomy is better than that in patients with unicondylar knee arthroplasty,but there is no significant difference in medium-and long-term efficacy between the two kinds of surgery for medial knee arthritis.
		                        		
		                        		
		                        		
		                        	
4.Treatment of Granulation Tissue Hyperplasia after Tracheostomy Based on the Kenang (窠囊) Theory
Yue YUAN ; Siyuan LEI ; Jiajia WANG ; Jiansheng LI
Journal of Traditional Chinese Medicine 2025;66(7):746-749
		                        		
		                        			
		                        			Granulation tissue hyperplasia after tracheotomy is a common clinical complication. Endoscopic treatment can temporarily relieve airway obstruction, however, it is associated with a high recurrence rate and poor long-term prognosis. Based on the traditional Chinese medicine (TCM) Kenang (窠囊) theory and combined with modern pathological mechanisms, this paper explores its correlation with the pathogenesis of post-tracheotomy granulation tissue hyperplasia. Drawing from clinical experience in applying the Kenang theory for treatment, this paper proposes that the fundamental pathogenesis of this condition lies in qi deficiency and organ dysfunction, while phlegm and blood stasis interlocking serve as the symptomatic manifestations. The treatment focuses on resolving phlegm and promoting blood circulation, dispersing nodules and eliminating stagnation, regulating qi flow, and reinforcing the body's vital energy while expelling pathogenic factors. This approach aims to dissolve phlegm and blood stasis, dissipate the Kenang, and ultimately prevent and treat granulation tissue hyperplasia. 
		                        		
		                        		
		                        		
		                        	
5.Structural and Spatial Analysis of The Recognition Relationship Between Influenza A Virus Neuraminidase Antigenic Epitopes and Antibodies
Zheng ZHU ; Zheng-Shan CHEN ; Guan-Ying ZHANG ; Ting FANG ; Pu FAN ; Lei BI ; Yue CUI ; Ze-Ya LI ; Chun-Yi SU ; Xiang-Yang CHI ; Chang-Ming YU
Progress in Biochemistry and Biophysics 2025;52(4):957-969
		                        		
		                        			
		                        			ObjectiveThis study leverages structural data from antigen-antibody complexes of the influenza A virus neuraminidase (NA) protein to investigate the spatial recognition relationship between the antigenic epitopes and antibody paratopes. MethodsStructural data on NA protein antigen-antibody complexes were comprehensively collected from the SAbDab database, and processed to obtain the amino acid sequences and spatial distribution information on antigenic epitopes and corresponding antibody paratopes. Statistical analysis was conducted on the antibody sequences, frequency of use of genes, amino acid preferences, and the lengths of complementarity determining regions (CDR). Epitope hotspots for antibody binding were analyzed, and the spatial structural similarity of antibody paratopes was calculated and subjected to clustering, which allowed for a comprehensively exploration of the spatial recognition relationship between antigenic epitopes and antibodies. The specificity of antibodies targeting different antigenic epitope clusters was further validated through bio-layer interferometry (BLI) experiments. ResultsThe collected data revealed that the antigen-antibody complex structure data of influenza A virus NA protein in SAbDab database were mainly from H3N2, H7N9 and H1N1 subtypes. The hotspot regions of antigen epitopes were primarily located around the catalytic active site. The antibodies used for structural analysis were primarily derived from human and murine sources. Among murine antibodies, the most frequently used V-J gene combination was IGHV1-12*01/IGHJ2*01, while for human antibodies, the most common combination was IGHV1-69*01/IGHJ6*01. There were significant differences in the lengths and usage preferences of heavy chain CDR amino acids between antibodies that bind within the catalytic active site and those that bind to regions outside the catalytic active site. The results revealed that structurally similar antibodies could recognize the same epitopes, indicating a specific spatial recognition between antibody and antigen epitopes. Structural overlap in the binding regions was observed for antibodies with similar paratope structures, and the competitive binding of these antibodies to the epitope was confirmed through BLI experiments. ConclusionThe antigen epitopes of NA protein mainly ditributed around the catalytic active site and its surrounding loops. Spatial complementarity and electrostatic interactions play crucial roles in the recognition and binding of antibodies to antigenic epitopes in the catalytic region. There existed a spatial recognition relationship between antigens and antibodies that was independent of the uniqueness of antibody sequences, which means that antibodies with different sequences could potentially form similar local spatial structures and recognize the same epitopes. 
		                        		
		                        		
		                        		
		                        	
6.Validation of a predictive model for platelet transfusion refractoriness in patients with hematological diseases
Xiulan HUANG ; Shuhan YUE ; Qun CAI ; Liqi LU ; Mengzhen HE ; Qiao LEI ; Caoyi LIU ; Jingwei ZHANG
Chinese Journal of Blood Transfusion 2025;38(4):537-545
		                        		
		                        			
		                        			[Objective] To validate and optimize the platelet transfusion refractoriness (PTR) prediction model for patients with hematological disorders established by our center. [Methods] The data of patients with hematological diseases who received platelet transfusions from December 2021 to December 2022 were used as the training set, and data from January 2023 to December 2023 as the validation set. The validation set data was used to validate the predictive model constructed on the training set. Relevant risk factors for PTR were collected through literature review and preliminary studies。 The patients were divided into effective and ineffective groups according to the corrected count increment (CCI) of platelet counts. Predictive factors were screened using univariate and multivariate logistic regression. The calibration of the model were assessed via calibration curves, while discrimination, accuracy, sensitivity, and specificity were evaluated using receiver operating characteristic (ROC) curves Clinical utility was further analyzed with decision curve analysis (DCA). [Results] The Hosmer-Lemeshow (H-L) goodness-of-fit test for the validation set yielded S: P=0.000, indicating that the original model needs optimization. Baseline comparisons and logistic regression identified the number of red blood cell units (RBCU) and platelet units (PLT-U) transfused as key predictors for the optimized model. The H-L goodness-of-fit test S: P values for the training and validation sets were 0.930 and 0.056, respectively; the ROC areas were 0.793 5 and 0.809 4, specificities 90.95% and 84.21%, sensitivities 59.26% and 70.04%, and accuracies 78.14% and 74.10%, respectively. DCA demonstrated clinical net benefit within a prediction probability threshold range of 0.2-0.8. [Conclusion] Transfusion volumes of RBC-U and PLT-U were inversely associated with PTR in hematological patients. The resulting PTR prediction model exhibits moderate predictive efficacy and clinical benefit.
		                        		
		                        		
		                        		
		                        	
7.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
		                        		
		                        			
		                        			ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum. 
		                        		
		                        		
		                        		
		                        	
8.Optimization of Processing Technology of Calcined Pyritum Based on QbD Concept and Its XRD Fingerprint Analysis
Xin CHEN ; Jingwei ZHOU ; Haiying GOU ; Lei ZHONG ; Tianxing HE ; Wenbo FEI ; Jialiang ZOU ; Yue YANG ; Dewen ZENG ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):197-205
		                        		
		                        			
		                        			ObjectiveBased on the concept of quality by design(QbD), the processing process of calcined Pyritum was optimized, and its X-ray diffraction(XRD) fingerprint was established. MethodsThe safety, effectiveness and quality controllability of calcined Pyritum were taken as the quality profile(QTPP), the color, hardness, metallic luster, phase composition, the contents of heavy metals and hazardous elements were taken as the critical quality attributes(CQAs), and the calcination temperature, calcination time, paving thickness and particle size were determined as the critical process parameters(CPPs). Differential thermal analysis, X-ray diffraction(XRD) and inductively coupled plasma mass spectrometry(ICP-MS) were used to analyze the correlation between the calcination temperature and CQAs of calcined Pyritum. Then, based on the criteria importance through intercriteria correlation(CRITIC)-entropy weight method, the optimal processing process of calcined Pyritum was optimized by orthogonal test. Powder XRD was used to analyze the phase of calcined Pyritum samples processed according to the best process, and the mean and median maps of calcined Pyritum were established by the superposition of geometric topological figures, and similarity evaluation and cluster analysis were carried out. ResultsThe results of single factor experiments showed that the physical phase of Pyritum changed from FeS2 to Fe7S8 during the process of temperature increase, the color gradually deepened from dark yellow, and the contents of heavy metals and harmful elements decreased. The optimized processing process of calcined Pyritum was as follows:calcination temperature at 750 ℃, calcination time of 2.5 h, paving thickness of 3 cm, particle size of 0.8-1.2 cm, vinegar quenching 1 time[Pyritum-vinegar(10∶3)]. After calcination, the internal structure of Pyritum was honeycomb-shaped, which was conducive to the dissolution of active ingredients. XRD fingerprints of 13 batches of calcined Pyritum characterized by 10 common peaks were established. The similarities of the relative peak intensities of the XRD fingerprints of the analyzed samples were>0.96, and it could effectively distinguish the raw products and unqualified products. ConclusionTemperature is the main factor affecting the quality of calcined Pyritum. After processing, the dissolution of the effective components in Pyritum increases, and the contents of heavy metals and harmful substances decrease, reflecting the function of processing to increase efficiency and reduce toxicity. The optimized processing process is stable and feasible, and the established XRD fingerprint can be used as one of the quality control standards of calcined Pyritum. 
		                        		
		                        		
		                        		
		                        	
9.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
		                        		
		                        			
		                        			ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum. 
		                        		
		                        		
		                        		
		                        	
10.Optimization of Processing Technology of Calcined Pyritum Based on QbD Concept and Its XRD Fingerprint Analysis
Xin CHEN ; Jingwei ZHOU ; Haiying GOU ; Lei ZHONG ; Tianxing HE ; Wenbo FEI ; Jialiang ZOU ; Yue YANG ; Dewen ZENG ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):197-205
		                        		
		                        			
		                        			ObjectiveBased on the concept of quality by design(QbD), the processing process of calcined Pyritum was optimized, and its X-ray diffraction(XRD) fingerprint was established. MethodsThe safety, effectiveness and quality controllability of calcined Pyritum were taken as the quality profile(QTPP), the color, hardness, metallic luster, phase composition, the contents of heavy metals and hazardous elements were taken as the critical quality attributes(CQAs), and the calcination temperature, calcination time, paving thickness and particle size were determined as the critical process parameters(CPPs). Differential thermal analysis, X-ray diffraction(XRD) and inductively coupled plasma mass spectrometry(ICP-MS) were used to analyze the correlation between the calcination temperature and CQAs of calcined Pyritum. Then, based on the criteria importance through intercriteria correlation(CRITIC)-entropy weight method, the optimal processing process of calcined Pyritum was optimized by orthogonal test. Powder XRD was used to analyze the phase of calcined Pyritum samples processed according to the best process, and the mean and median maps of calcined Pyritum were established by the superposition of geometric topological figures, and similarity evaluation and cluster analysis were carried out. ResultsThe results of single factor experiments showed that the physical phase of Pyritum changed from FeS2 to Fe7S8 during the process of temperature increase, the color gradually deepened from dark yellow, and the contents of heavy metals and harmful elements decreased. The optimized processing process of calcined Pyritum was as follows:calcination temperature at 750 ℃, calcination time of 2.5 h, paving thickness of 3 cm, particle size of 0.8-1.2 cm, vinegar quenching 1 time[Pyritum-vinegar(10∶3)]. After calcination, the internal structure of Pyritum was honeycomb-shaped, which was conducive to the dissolution of active ingredients. XRD fingerprints of 13 batches of calcined Pyritum characterized by 10 common peaks were established. The similarities of the relative peak intensities of the XRD fingerprints of the analyzed samples were>0.96, and it could effectively distinguish the raw products and unqualified products. ConclusionTemperature is the main factor affecting the quality of calcined Pyritum. After processing, the dissolution of the effective components in Pyritum increases, and the contents of heavy metals and harmful substances decrease, reflecting the function of processing to increase efficiency and reduce toxicity. The optimized processing process is stable and feasible, and the established XRD fingerprint can be used as one of the quality control standards of calcined Pyritum. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail