1.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
2. Function of Cortactin/N-cadherin signal axis in pathological myocardial hypertrophy
Yue-Mei WANG ; Wen-Jing YU ; Xi-Meng SUN ; Jing ZHANG ; Jing LU ; Pei-Qing LIU
Chinese Pharmacological Bulletin 2024;40(2):234-242
Aim To investigate the regulatory effect of Cortaetin on pathological myocardial hypertrophy induced by isoprenaline (ISO) and the underlying mechanism. Methods ISO was used to stimulate neonatal rat cardiomyocytes for 24 h, and myocardial hypertrophy model was established at the cellular level. C57BL/6 mice were injected subcutaneously with ISO for one week to establish myocardial hypertrophy model at animal level. RT-qPCR was used to detect the changes of mRNA and Western blot was used to detect the changes of relative protein content. Immunofluorescence was used to measure the subcellular location of Cortaetin and the change of its expression. The overex-pression of Cortaetin by adenovirus infection and the knockdown of Cortaetin by transfection of small interfering RNA were studied. Results On the cellular and animal levels, ISO-induced myocardial hypertrophy models were successfully established, and it was observed that ISO caused the decrease of Cortaetin and N-cadherin protein levels. Overexpression of Cortaetin could reverse the decrease of N-cadherin protein level and myocardial hypertrophy caused by ISO. Knockdown of Cortaetin showed the opposite effect. Conclusion Cortaetin, in combination with N-cadherin, may play a role in combating myocardial hypertrophy by enhancing the connections between cardiomyocytes.
3.Pharmacokinetics of single-dose of Etripamil nasal spray in healthy adult Chinese subjects
Wei LIU ; Guo-Ying CAO ; Shu-Yan YU ; Yue-Wen XI ; Jing-Hui LUO ; Bo LIU ; Yu HE ; Tong-Yong FANG ; Xiao-Wen CHEN ; Yuan LI ; Jing ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(13):1948-1952
Objective To evaluate the pharmacokinetics characteristics of single-dose of Etripamil nasal spray 70 mg in healthy adult Chinese subjects.Methods This was a single-center,randomized,double-blind,placebo-controlled study.Twelve healthy adult Chinese subjects were randomized to receive single-dose of Etripamil nasal spray 70 mg(n=10)or placebo nasal spray(n=2).Blood and urine samples were collected prior and post dose.Etripamil in plasma and urine were analyzed by liquid chromatography-tandem mass spectrometry.The pharmacokinetic parameters were calculated by WinNonlin non-compartmental model.Results Following the single-dose of Etripamil nasal spray 70 mg in healthy adult Chinese subjects,the peak concentration of Etripamil in plasma was quickly attained,with a Cmax of(66.76±56.61)ng·mL-1 and a median(range)tmax of 4.00(3.00-5.00)min.The plasma concentrations of Etripamil had fallen approximately 65%from peak value at 25 min after dosing,and close to 80%within 50 min.The AUC0-last and AUC0-∞ were(3 104.16±2 654.46)and(4 048.77±2 682.38)ng·min·mL-1,respectively.The urine excretion percentage of Etripamil during 24 h was(0.01±0.01)%.Among the 12 subjects who were treated with Etripamil or placebo,10 subjects reported a total of 29 treatment-emergent adverse events(TEAEs).All of the TEAEs were mild in severity.The most common TEAEs were rhinorrhoea and lacrimation increased.Conclusion Etripamil was quickly absorbed after intranasal administration,followed by rapid distribution and elimination(not primarily excreted by renal);Etripamil 70 mg was safe and well tolerated by the healthy Chinese adult subjects.
4.Tumor Therapy: Targeted Substances Metabolism Reprogramming Induces Tumor Ferroptosis
Jin-Ping ZHANG ; Yue-Qing WANG ; Mo WANG ; Xin-Yue WANG ; Xiao-Qin MOU ; Xi ZHENG ; Chuang CHENG ; Jing HE ; Li-Li ZOU ; Xiao-Wen LIU
Progress in Biochemistry and Biophysics 2024;51(7):1540-1550
There are huge differences between tumor cells and normal cells in material metabolism, and tumor cells mainly show increased anabolism, decreased catabolism, and imbalance in substance metabolism. These differences provide the necessary material basis for the growth and reproduction of tumor cells, and also provide important targets for the treatment of tumors. Ferroptosis is an iron-dependent form of cell death characterized by an imbalance of iron-dependent lipid peroxidation and lipid membrane antioxidant systems in cells, resulting in excessive accumulation of lipid peroxide, causing damage to lipid membrane structure and loss of function, and ultimately cell death. The regulation of ferroptosis involves a variety of metabolic pathways, including glucose metabolism, lipid metabolism, amino acid metabolism, nucleotide metabolism and iron metabolism. In order for tumor cells to grow rapidly, their metabolic needs are more vigorous than those of normal cells. Tumor cells are metabolically reprogrammed to meet their rapidly proliferating material and energy needs. Metabolic reprogramming is mainly manifested in glycolysis and enhancement of pentose phosphate pathway, enhanced glutamine metabolism, increased nucleic acid synthesis, and iron metabolism tends to retain more intracellular iron. Metabolic reprogramming is accompanied by the production of reactive oxygen species and the activation of the antioxidant system. The state of high oxidative stress makes tumor cells more susceptible to redox imbalances, causing intracellular lipid peroxidation, which ultimately leads to ferroptosis. Therefore, in-depth study of the molecular mechanism and metabolic basis of ferroptosis is conducive to the development of new therapies to induce ferroptosis in cancer treatment. Ferroptosis, as a regulated form of cell death, can induce ferroptosis in tumor cells by pharmacologically or genetically targeting the metabolism of substances in tumor cells, which has great potential value in tumor treatment. This article summarizes the effects of cellular metabolism on ferroptosis in order to find new targets for tumor treatment and provide new ideas for clinical treatment.
5.Construction of CRISPR/Cas9 knock-in system for tardigrade damage suppressor gene Dsup and its effect on HEK 293T cell proliferation
Yuting GAO ; Biao ZHANG ; Yali JIA ; Haiyang WANG ; Tao FAN ; Jiafei XI ; Wen YUE ; Quan ZENG ; Junnian ZHOU
Military Medical Sciences 2024;48(8):586-593
Objective To construct HEK 293T cells that express tardigrade Dsup protein fused with green fluorescent protein copGFP in order to study the effect of Dsup protein on proliferation of HEK 293T cells.Methods The CRISPR/Cas9 gene knock-in system was constructed.The target gene fragments of Dsup,copGFP,EF1α and puromycin were amplified by PCR and inserted into pAAVS1-SFFV to construct the fusion vector of Dsup and copGFP,which was known as pAAVS1-SFFV-Dsup-copGFP-EF1α-Puro.pAAVS1-SFFV-Dsup-copGFP-EF1 α-Puro and pAAVS1-CRISPR-Cas9 vector were co-transfected into HEK 293T cells before Dsup gene was inserted into the AAVS1 region of HEK 293T cells via homologous recombination.The HEK 293T cells expressing Dsup gene were obtained following puromycin selection,flow cytometry sorting and genome identification.The expression of Dsup at mRNA and protein levels and proliferation-related genes(MCM2,MCM4,PCNA,Ki-67)were examined to investigate the effects of Dsup gene on the proliferation of HEK 293T-Dsup-copGFP cells.Results The pAAVS1-SFFV-Dsup-copGFP-EF1α-Puro recombinant vector was constructed,and the HEK 293T-Dsup-copGFP cells with Dsup gene inserted in the AAVS1 region were obtained,where both Dsup mRNA and protein were expressed.The cell proliferation rate of HEK 293T-Dsup-copGFP was higher than that of HEK 293T-Control-copGFP(P<0.001).Further investigation revealed that the expressions of Ki-67 and MCM4 protein in HEK 293T-Dsup-copGFP were significantly higher than in the control group,indicating that the knock in of Dsup gene might enhance the proliferation ability of human cells by promoting the expression of Ki-67 and MCM4 protein.Conclusion A gene editing vector is constructed,and stable cell line HEK 293T-Dsup-copGFP for Dsup fusion expression with copGFP is established.The expression of Dsup gene in HEK 293T cells can promote cell proliferation,possibly by upregulating the expressions of Ki-67 and MCM4 protein.
6.Identify the metabolites of total saponins of Platycodonis Radix in blood based on intestinal bacteria-mediated method
Xi-wa WU ; Xin-yu ZHANG ; Yuan-han ZHONG ; Xue-mei ZHANG ; Yu ZHOU ; Yan FENG ; Qian QIN ; Shou-wen ZHANG ; Guo-yue ZHONG ; Jin-xiang ZENG
Acta Pharmaceutica Sinica 2024;59(11):3141-3152
The identification of the components absorbed in serum of platycosides in total saponins fraction of Platycodonis Radix
7.Porcine SIRT5 promotes replication of foot and mouth disease virus type O in PK-15 cells
Guo-Hui CHEN ; Xi-Juan SHI ; Xin-Tian BIE ; Xing YANG ; Si-Yue ZHAO ; Da-Jun ZHANG ; Deng-Shuai ZHAO ; Wen-Qian YAN ; Ling-Ling CHEN ; Mei-Yu ZHAO ; Lu HE ; Hai-Xue ZHENG ; Xia LIU ; Ke-Shan ZHANG
Chinese Journal of Zoonoses 2024;40(5):421-429
The effect of porcine SIRT5 on replication of foot and mouth disease virus type O(FMDV-O)and the underlying regulatory mechanism were investigated.Western blot and RT-qPCR analyses were employed to monitor expression of endoge-nous SIRT5 in PK-15 cells infected with FMDV-O.Three pairs of SIRT5-specific siRNAs were synthesized.Changes to SIRT5 and FMDV-O protein and transcript levels,in addition to virus copy numbers,were measured by western blot and RT-qPCR analyses.PK-15 cells were transfected with a eukaryotic SIRT5 expression plasmid.Western blot and RT-qPCR analyses were used to explore the impact of SIRT5 overexpression on FMDV-O replication.Meanwhile,RT-qPCR analysis was used to detect the effect of SIRT5 overexpression on the mRNA expression levels of type I interferon-stimulated genes induced by SeV and FMDV-O.The results showed that expression of SIRT5 was up-regulated in PK-15 cells infected with FMDV-O and siRNA interfered with SIRT5 to inhibit FMDV-O replication.SIRT5 overexpression promoted FMDV-O replication.SIRT5 over-expression decreased mRNA expression levels of interferon-stimulated genes induced by SeV and FMDV-O.These results suggest that FMDV-O infection stimulated expression of SIRT5 in PK-15 cells,while SIRT5 promoted FMDV-O rep-lication by inhibiting production of type I interferon-stimula-ted genes.These findings provide a reference to further ex-plore the mechanism underlying the ability of porcine SIRT5 to promote FMDV-O replication.
8.In Vitro Amplification of NK Cells from Feeder Layer Cells Expressing IL-21
Zhen-Zhao XU ; Xue-Hua ZHANG ; Ling-Ping ZHAO ; Gao-Hua LI ; Tian-Tian CUI ; Xiao-Ling WANG ; Xuan LI ; Ru-Ge ZANG ; Wen YUE ; Ya-Nan WANG ; Guo-Xin LI ; Jia-Fei XI
Journal of Experimental Hematology 2024;32(5):1578-1584
Objective:To investigate the effect of feeder layer cells expressing interleukin(IL)-21 on the amplification of NK cells in vitro.Methods:The K562 cell line with IL-21 expression on its membrane was constructed by electroporation,and co-cultured with NK cells after inactivation.The proliferation of NK cells was observed.The killing function of the amplified NK cells in vitro was evaluated by the lactate dehydrogenase(LDH)and interferon-γ(IFN-y)release assay.A colorectal cancer xenograft model in NOD/SCID mice was established,and a blank control group,a NK cell group and an amplified NK cell group were set up to detect the tumor killing effect of amplified NK cells in vivo.Results:K562 cells expressing IL-21 on the membrane were successfully constructed by electroporation.After co-culturing with K562 cells expressing IL-21 on the membrane for 17 days,the NK cells increased to 700 times,which showed an enhanced amplification ability compared with control group(P<0.001).In the tumor cell killing experiment in vitro,there was no significant difference in the killing activity on tumor cells between NK cells and amplified NK cells,and there was also no significant difference in mice in vivo.Conclusion:K562 cells expressing IL-21 on the membrane can significantly increase the amplification ability of NK cells in vitro,but do not affect the killing function of NK cells in vitro and in vivo.It can be used for the subsequent large-scale production of NK cells in vitro.
9.Synergistic Effect of IGF1-R Inhibitor AEW541 on Imatinib Indu-cing SUP-B15 Cell Death
Cong-Yue WANG ; Wen-Wen ZHANG ; Li NIAN ; Xu CAO ; Jing-Jing XI ; Wen-Tong GUO ; Chong CHEN
Journal of Experimental Hematology 2024;32(6):1704-1710
Objective:To explore whether Ph+acute lymphoblastic leukemia (ALL)cell line SUP-B15 treated with imatinib occurs a tolerant status charactered by cell proliferation suppression but apoptotic resistance,then evaluate whether IGF1-R inhibitor AEW541 can break this tolerance,and further explain its mechanisms.Methods:SUP-B15 cells were treated with different concentrations of imatinib or AEW541.Cell proliferation was assayed by Deep Blue,and apoptotic cells were determined by Annexin V/7-AAD staining.Apoptotic rate was measured by flow cytometry after co-treatment of imatinib and AEW541.Western blot was used to evaluate ABL downstream signals,including the phosphorylation of STAT5,ERK1/2,and AKT,as well as to detect cleaved caspase-3 and PARP1,the molecular signatures of apoptosis.Furthermore,an inhibitor of STAT5 or MEK-ERK1/2 was used to confirm the key mechanism of the combination of imatinib and AEW541 induced SUP-B15 cell apoptosis.Results:Imatinib monotherapy effectively suppressed the proliferation of SUP-B15 cells,but did not induce significant increase of apoptotic rate,leading to occurrence of tolerant status.AEW541 monotherapy did not dramatically affect the proliferation and apoptosis of SUP-B15 cells,but significantly increased apoptotic rate of SUP-B15 cells and cleavage of caspase-3 and PARP1 when combined with imatinib simultaneously. A combination of imatinib and AEW541 reduced STAT5 and ERK1/2 phosphorylation as compared with imatinib monotherapy in SUP-B15 cells,but had no impact on AKT phosphorylation.Apoptosis could be induced by STAT5 inhibitor AC-4-130,but not by MEK-ERK1/2 inhibitor trametinib in SUP-B15 cells.Conclusion:SUP-B15 cells treated with imatinib can establish drug tolerance.IGF1-R inhibitor AEW541 can further reduce STAT5 activation,thereby boosting the effect of apoptotic induction of imatinib on SUP-B15 cells.This research may provide a new idear to overcome imatinib tolerance.
10.Clinical features and prognosis of core binding factor acute myeloid leukemia children in South China: a multicenter study.
Bi Yun GUO ; Yue WANG ; Jian LI ; Chun Fu LI ; Xiao Qin FENG ; Min Cui ZHENG ; Si Xi LIU ; Li Hua YANG ; Hua JIANG ; Hong Gui XU ; Xiang Ling HE ; Hong WEN
Chinese Journal of Pediatrics 2023;61(10):881-888
Objective: To analyze the clinical features, efficacy and prognosis factors of core binding factor (CBF) acute myeloid leukemia (AML) children in South China. Methods: This was a retrospective cohort study. Clinical data of 584 AML patients from 9 hospitals between January 2015 to December 2020 was collected. According to fusion gene results, all patients were divided into two groups: CBF-AML group (189 cases) and non-CBF-AML group (395 cases). CBF-AML group were divided into AML1-ETO subgroup (154 cases) and CBFβ-MYH11 subgroup (35 cases). Patients in CBF-AML group chosen different induction scheme were divided into group A (fludarabine, cytarabine, granulocyte colony stimulating factor and idarubicin (FLAG-IDA) scheme, 134 cases) and group B (daunorubicin, cytarabine and etoposide (DAE) scheme, 55 cases). Age, gender, response rate, recurrence rate, mortality, molecular genetic characteristics and other clinical data were compared between groups. Kaplan-Meier method was used for survival analysis and survival curve was drawn. Cox regression model was used to analyze prognostic factors. Results: A total of 584 AML children were diagnosed, including 346 males and 238 females. And a total of 189 children with CBF-AML were included, including 117 males and 72 females. The age of diagnosis was 7.3 (4.5,10.0)years, and the white blood cell count at initial diagnosis was 21.4 (9.7, 47.7)×109/L.The complete remission rate of the first course (CR1) of induction therapy, relapse rate, and mortality of children with CBF-AML were significantly different from those in the non-CBF-AML group (91.0% (172/189) vs. 78.0% (308/395); 10.1% (19/189) vs. 18.7% (74/395); 13.2% (25/189) vs. 25.6% (101/395), all P<0.05). In children with CBF-AML, the CBFβ-MYH11 subgroup had higher initial white blood cells and lower proportion of extramedullary invasion than the AML1-ETO subgroup, with statistical significance (65.7% (23/35) vs. 14.9% (23/154), 2.9% (1/35) vs. 16.9% (26/154), both P<0.05). AML1-ETO subgroup had more additional chromosome abnormalities (75/154), especially sex chromosome loss (53/154). Compared with group B, group A had more additional chromosome abnormalities and a higher proportion of tumor reduction regimen, with statistical significance (50.0% (67/134) vs. 29.1% (16/55), 34.3% (46/134) vs. 18.2% (10/55), both P<0.05). Significant differences were found in 5-years event free survival (EFS) rate and 5-year overall survival (OS) rate between CBF-AML group and non-CBF-AML group ((77.0±6.4)%vs. (61.9±6.7)%,(83.7±9.0)%vs. (67.3±7.2)%, both P<0.05).EFS and OS rates of AML1-ETO subgroup and CBFβ-MYH11 subgroup in children with CBF-AML were not significantly different (both P>0.05). Multivariate analysis showed in the AML1-ETO subgroup, CR1 rate and high white blood cell count (≥50×109/L) were independent risk factors for EFS (HR=0.24, 95%CI 0.07-0.85,HR=1.01, 95%CI 1.00-1.02, both P<0.05) and OS (HR=0.24, 95%CI 0.06-0.87; HR=1.01, 95%CI 1.00-1.02; both P<0.05). Conclusions: In CBF-AML, AML1-ETO is more common which has a higher extramedullary involvement and additional chromosome abnormalities, especially sex chromosome loss. The prognosis of AML1-ETO was similar to that of CBFβ-MYH11. The selection of induction regimen group FLAG-IDA for high white blood cell count and additional chromosome abnormality can improve the prognosis.
Male
;
Female
;
Humans
;
Child
;
Retrospective Studies
;
RUNX1 Translocation Partner 1 Protein/genetics*
;
Core Binding Factor Alpha 2 Subunit/therapeutic use*
;
Prognosis
;
Leukemia, Myeloid, Acute/genetics*
;
Cytarabine/therapeutic use*
;
Oncogene Proteins, Fusion/genetics*
;
Chromosome Aberrations

Result Analysis
Print
Save
E-mail