1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.Study on the intervention of trigonelline on ferroptosis of ARPE-19 based on Nrf2/HO-1/GPX4 signaling pathway
Xinxin YUE ; Yang FU ; Haizhe JIN ; Xiaoyan YIN ; Quanwei FU
International Eye Science 2025;25(2):191-197
AIM: To investigate and clarify the intervention mechanism of trigonelline(TRG)in preventing ferroptosis in ARPE-19 cells based on the Nrf2/HO-1/GPX4 pathway.METHODS: The ARPE-19 cells were cultured and subsequently treated with varying concentrations of trigonelline to ascertain the most effective concentration for modulating the cells. Then the cells were categorized into distinct groups, including normal control(NC)group, high glucose(HG)group, Fer-1 group, TRG group based on the determined concentration. Samples from each group were then gathered to assess relevant indicators. The intracellular levels of glutathione(GSH), malondialdehyde(MDA), and Ferrion were quantified in accordance with the protocols provided by the GSH, MDA, and Ferrion detection kits. Flow cytometry was employed to measure the ROS levels within each group. Additionally, Western blot analysis was conducted to examine the expression of nuclear factor erythroid 2-related factor 2(Nrf2), heme oxygenase-1(HO-1), glutathione peroxidase(GPX4), and acyl-CoA synthetase long-chain family member 4(ACSL4)across the different groups.RESULTS: The preconditioning intervention with 40 μg/mL TRG effectively mitigated the decline in cell activity induced by high glucose levels. The levels of reactive oxygen species(ROS)and MDA in the HG group were markedly elevated compared to the NC group; and the TRG group exhibited significantly reduced levels of ROS and MDA compared to those of the HG group, with the antioxidant stress index GSH showing opposite trends to those of ROS and MDA across all the groups. Whereas the Fer-1 and TRG groups showed decreased expression levels of ACSL4 protein and iron ions, and the expression levels of Nrf2, HO-1 and GPX4 in the Fer-1 and TRG groups were increased.CONCLUSION: TRG protects ARPE-19 cells from the detrimental effects of high glucose by targeting the Nrf2/HO-1/GPX4 signaling pathway to counter ferroptosis.
3.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
4.Validation of a predictive model for platelet transfusion refractoriness in patients with hematological diseases
Xiulan HUANG ; Shuhan YUE ; Qun CAI ; Liqi LU ; Mengzhen HE ; Qiao LEI ; Caoyi LIU ; Jingwei ZHANG
Chinese Journal of Blood Transfusion 2025;38(4):537-545
[Objective] To validate and optimize the platelet transfusion refractoriness (PTR) prediction model for patients with hematological disorders established by our center. [Methods] The data of patients with hematological diseases who received platelet transfusions from December 2021 to December 2022 were used as the training set, and data from January 2023 to December 2023 as the validation set. The validation set data was used to validate the predictive model constructed on the training set. Relevant risk factors for PTR were collected through literature review and preliminary studies。 The patients were divided into effective and ineffective groups according to the corrected count increment (CCI) of platelet counts. Predictive factors were screened using univariate and multivariate logistic regression. The calibration of the model were assessed via calibration curves, while discrimination, accuracy, sensitivity, and specificity were evaluated using receiver operating characteristic (ROC) curves Clinical utility was further analyzed with decision curve analysis (DCA). [Results] The Hosmer-Lemeshow (H-L) goodness-of-fit test for the validation set yielded S: P=0.000, indicating that the original model needs optimization. Baseline comparisons and logistic regression identified the number of red blood cell units (RBCU) and platelet units (PLT-U) transfused as key predictors for the optimized model. The H-L goodness-of-fit test S: P values for the training and validation sets were 0.930 and 0.056, respectively; the ROC areas were 0.793 5 and 0.809 4, specificities 90.95% and 84.21%, sensitivities 59.26% and 70.04%, and accuracies 78.14% and 74.10%, respectively. DCA demonstrated clinical net benefit within a prediction probability threshold range of 0.2-0.8. [Conclusion] Transfusion volumes of RBC-U and PLT-U were inversely associated with PTR in hematological patients. The resulting PTR prediction model exhibits moderate predictive efficacy and clinical benefit.
5.Optimization of Processing Technology of Calcined Pyritum Based on QbD Concept and Its XRD Fingerprint Analysis
Xin CHEN ; Jingwei ZHOU ; Haiying GOU ; Lei ZHONG ; Tianxing HE ; Wenbo FEI ; Jialiang ZOU ; Yue YANG ; Dewen ZENG ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):197-205
ObjectiveBased on the concept of quality by design(QbD), the processing process of calcined Pyritum was optimized, and its X-ray diffraction(XRD) fingerprint was established. MethodsThe safety, effectiveness and quality controllability of calcined Pyritum were taken as the quality profile(QTPP), the color, hardness, metallic luster, phase composition, the contents of heavy metals and hazardous elements were taken as the critical quality attributes(CQAs), and the calcination temperature, calcination time, paving thickness and particle size were determined as the critical process parameters(CPPs). Differential thermal analysis, X-ray diffraction(XRD) and inductively coupled plasma mass spectrometry(ICP-MS) were used to analyze the correlation between the calcination temperature and CQAs of calcined Pyritum. Then, based on the criteria importance through intercriteria correlation(CRITIC)-entropy weight method, the optimal processing process of calcined Pyritum was optimized by orthogonal test. Powder XRD was used to analyze the phase of calcined Pyritum samples processed according to the best process, and the mean and median maps of calcined Pyritum were established by the superposition of geometric topological figures, and similarity evaluation and cluster analysis were carried out. ResultsThe results of single factor experiments showed that the physical phase of Pyritum changed from FeS2 to Fe7S8 during the process of temperature increase, the color gradually deepened from dark yellow, and the contents of heavy metals and harmful elements decreased. The optimized processing process of calcined Pyritum was as follows:calcination temperature at 750 ℃, calcination time of 2.5 h, paving thickness of 3 cm, particle size of 0.8-1.2 cm, vinegar quenching 1 time[Pyritum-vinegar(10∶3)]. After calcination, the internal structure of Pyritum was honeycomb-shaped, which was conducive to the dissolution of active ingredients. XRD fingerprints of 13 batches of calcined Pyritum characterized by 10 common peaks were established. The similarities of the relative peak intensities of the XRD fingerprints of the analyzed samples were>0.96, and it could effectively distinguish the raw products and unqualified products. ConclusionTemperature is the main factor affecting the quality of calcined Pyritum. After processing, the dissolution of the effective components in Pyritum increases, and the contents of heavy metals and harmful substances decrease, reflecting the function of processing to increase efficiency and reduce toxicity. The optimized processing process is stable and feasible, and the established XRD fingerprint can be used as one of the quality control standards of calcined Pyritum.
6.Optimization of Processing Technology of Calcined Pyritum Based on QbD Concept and Its XRD Fingerprint Analysis
Xin CHEN ; Jingwei ZHOU ; Haiying GOU ; Lei ZHONG ; Tianxing HE ; Wenbo FEI ; Jialiang ZOU ; Yue YANG ; Dewen ZENG ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):197-205
ObjectiveBased on the concept of quality by design(QbD), the processing process of calcined Pyritum was optimized, and its X-ray diffraction(XRD) fingerprint was established. MethodsThe safety, effectiveness and quality controllability of calcined Pyritum were taken as the quality profile(QTPP), the color, hardness, metallic luster, phase composition, the contents of heavy metals and hazardous elements were taken as the critical quality attributes(CQAs), and the calcination temperature, calcination time, paving thickness and particle size were determined as the critical process parameters(CPPs). Differential thermal analysis, X-ray diffraction(XRD) and inductively coupled plasma mass spectrometry(ICP-MS) were used to analyze the correlation between the calcination temperature and CQAs of calcined Pyritum. Then, based on the criteria importance through intercriteria correlation(CRITIC)-entropy weight method, the optimal processing process of calcined Pyritum was optimized by orthogonal test. Powder XRD was used to analyze the phase of calcined Pyritum samples processed according to the best process, and the mean and median maps of calcined Pyritum were established by the superposition of geometric topological figures, and similarity evaluation and cluster analysis were carried out. ResultsThe results of single factor experiments showed that the physical phase of Pyritum changed from FeS2 to Fe7S8 during the process of temperature increase, the color gradually deepened from dark yellow, and the contents of heavy metals and harmful elements decreased. The optimized processing process of calcined Pyritum was as follows:calcination temperature at 750 ℃, calcination time of 2.5 h, paving thickness of 3 cm, particle size of 0.8-1.2 cm, vinegar quenching 1 time[Pyritum-vinegar(10∶3)]. After calcination, the internal structure of Pyritum was honeycomb-shaped, which was conducive to the dissolution of active ingredients. XRD fingerprints of 13 batches of calcined Pyritum characterized by 10 common peaks were established. The similarities of the relative peak intensities of the XRD fingerprints of the analyzed samples were>0.96, and it could effectively distinguish the raw products and unqualified products. ConclusionTemperature is the main factor affecting the quality of calcined Pyritum. After processing, the dissolution of the effective components in Pyritum increases, and the contents of heavy metals and harmful substances decrease, reflecting the function of processing to increase efficiency and reduce toxicity. The optimized processing process is stable and feasible, and the established XRD fingerprint can be used as one of the quality control standards of calcined Pyritum.
7.A simple sonographic approach to thoracic transforaminal epidural injections for zoster-associated pain involving multiple nerves: an exploratory prospective cohort study
Shuyue ZHENG ; Dan WANG ; Li YUE ; Liangliang HE
Korean Journal of Anesthesiology 2025;78(3):236-247
Background:
A simple superoposterior approach to thoracic transforaminal epidural injections (TFEIs) under ultrasonographic guidance was proposed to reduce zoster-associated pain (ZAP) involving multiple thoracic nerves and the likelihood of transitioning to postherpetic neuralgia (PHN).
Methods:
Patients were prospectively enrolled. Primary endpoints were the burden of illness (BOI) scores and epidural contrast spread. Secondary endpoints included number of needle insertion attempts, sensory blockade, hemodynamic changes, procedure time, radiation dose, adverse events, rescue analgesics, PHN incidence and EuroQoL 5-Dimension scores.
Results:
Thirty-five injections were performed in 27 patients. Median levels of cephalad-caudad epidural contrast spread were 3, 4, and 5 ml following injections of 2, 3, and 4 ml. Dorsal epidural spread was observed at levels 3, 4, and 5, whereas concurrent ventral spread was observed at levels 2, 3, and 4. BOI scores at 30–180 days significantly decreased (mean difference: −25.3, 95% CI [−57.4 to 6.6], P = 0.005), accounting for reduced rescue analgesic requirements and PHN occurrence and improved EuroQoL 5-Dimension scores. Median sensory blockade at 5 min post-procedure was at level 2, 3, and 4 after 2, 3, and 4 ml of therapeutic injectate. No significant hemodynamic changes were noted at 15 min post-injection. No serious adverse events were observed.
Conclusions
Spread of thoracic epidural contrast to all involved nerves was confirmed using this novel technique. Simplified needle placement reduced the technical difficulty and risk of complications. It might be a promising alternative approach for ZAP.
8.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
9.A simple sonographic approach to thoracic transforaminal epidural injections for zoster-associated pain involving multiple nerves: an exploratory prospective cohort study
Shuyue ZHENG ; Dan WANG ; Li YUE ; Liangliang HE
Korean Journal of Anesthesiology 2025;78(3):236-247
Background:
A simple superoposterior approach to thoracic transforaminal epidural injections (TFEIs) under ultrasonographic guidance was proposed to reduce zoster-associated pain (ZAP) involving multiple thoracic nerves and the likelihood of transitioning to postherpetic neuralgia (PHN).
Methods:
Patients were prospectively enrolled. Primary endpoints were the burden of illness (BOI) scores and epidural contrast spread. Secondary endpoints included number of needle insertion attempts, sensory blockade, hemodynamic changes, procedure time, radiation dose, adverse events, rescue analgesics, PHN incidence and EuroQoL 5-Dimension scores.
Results:
Thirty-five injections were performed in 27 patients. Median levels of cephalad-caudad epidural contrast spread were 3, 4, and 5 ml following injections of 2, 3, and 4 ml. Dorsal epidural spread was observed at levels 3, 4, and 5, whereas concurrent ventral spread was observed at levels 2, 3, and 4. BOI scores at 30–180 days significantly decreased (mean difference: −25.3, 95% CI [−57.4 to 6.6], P = 0.005), accounting for reduced rescue analgesic requirements and PHN occurrence and improved EuroQoL 5-Dimension scores. Median sensory blockade at 5 min post-procedure was at level 2, 3, and 4 after 2, 3, and 4 ml of therapeutic injectate. No significant hemodynamic changes were noted at 15 min post-injection. No serious adverse events were observed.
Conclusions
Spread of thoracic epidural contrast to all involved nerves was confirmed using this novel technique. Simplified needle placement reduced the technical difficulty and risk of complications. It might be a promising alternative approach for ZAP.
10.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.

Result Analysis
Print
Save
E-mail