1.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
		                        		
		                        			
		                        			Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes. 
		                        		
		                        		
		                        		
		                        	
2.Design of intelligent surgery management system
Chinese Medical Equipment Journal 2024;45(1):42-46
		                        		
		                        			
		                        			Objective To design an intelligent surgery management system for closed-loop management of the entire surgical process.Methods An intelligent surgery management system was developed with digital twin technology,Microsoft Visual Studio 12.0 development toolset and C# language,which realized multi-modal data acquisition with IoT devices such as radio frequency identification(RFID)bracelets,mobile terminals and positioning base stations and real-time data mirroring and gathering by change data capture(CDC)technology.There were four functional modules included in the system developed,including the modules for IoT device management,transfer process recording,intelligent management command chamber and surgical progress reminder.Results The system developed could provide real-time feedback on the operation status of all aspects of surgery,shorten the lengths of preoperative positioning and surgical reception and improve the satisfaction of both doctors and patients.Conclusion The system developed achieves closed-loop management and complete data traceability of the entire surgical process,helping to form an efficient and safe surgical operation management system.[Chinese Medical Equipment Journal,2024,45(1):42-46]
		                        		
		                        		
		                        		
		                        	
4.Innovative Nerve Root Protection in Full-Endoscopic Facet-Resecting Lumbar Interbody Fusion: Controlled Cage Glider Rotation Using the GUARD (Glider Used As a Rotary Device) Technique
Yu-Chia HSU ; Hao-Chun CHUANG ; Wei-Lun CHANG ; Yuan-Fu LIU ; Chao-Jui CHANG ; Yu-Meng HSIAO ; Yi-Hung HUANG ; Keng-Chang LIU ; Chien-Min CHEN ; Hyeun-Sung KIM ; Cheng-Li LIN
Neurospine 2024;21(4):1141-1148
		                        		
		                        			
		                        			 This video presents a case of L4–5 unstable spondylolisthesis treated with full-endoscopic transforaminal lumbar interbody fusion (Endo-TLIF), emphasizing the GUARD (Glider Used as a Rotary Device) technique for nerve root protection. This innovative approach involves controlled rotation of the cage glider before cage insertion to minimize the risk of nerve root injury, a significant complication in Endo-TLIF procedures. The GUARD technique, validated in previous cadaveric studies, provides enhanced safety during cage insertion by protecting the nerve root. A 48-year-old woman with a 3-year history of progressive low back pain and bilateral lower extremity radiculopathy (right-sided predominance) was diagnosed with L4–5 unstable spondylolisthesis and spinal stenosis. After failure of conservative management, she underwent uniportal full-endoscopic facet-resecting transforaminal lumbar interbody fusion using the GUARD technique. Postoperatively, the patient experienced significant symptomatic improvement and resolution of radiculopathy, without any intraoperative nerve root injury or postoperative neurological deficits. This case demonstrates the effectiveness of the GUARD technique in reducing neurological complications and improving patient outcomes. 
		                        		
		                        		
		                        		
		                        	
5.Reducing Postoperative Neurological Complications in Uniportal Full-Endoscopic Lumbar Interbody Fusion: Efficacy of the GUARD Technique Combined With Delayed Ligamentum Flavectomy
Hao-Chun CHUANG ; Yu-Chia HSU ; Yuan-Fu LIU ; Chao-Jui CHANG ; Yu-Meng HSIAO ; Yi-Hung HUANG ; Keng-Chang LIU ; Chien-Min CHEN ; Hyeun Sung KIM ; Cheng-Li LIN
Neurospine 2024;21(4):1199-1209
		                        		
		                        			 Objective:
		                        			Uniportal full-endoscopic transforaminal lumbar interbody fusion (FE-TLIF) carries a unique risk of nerve traction and abrasion injury during cage insertion. This study aims to evaluate the clinical efficacy of the GUARD technique and delayed ligamentum flavectomy in reducing postoperative radicular pain and neurapraxia in patients undergoing uniportal FE-TLIF. 
		                        		
		                        			Methods:
		                        			A retrospective analysis was conducted on 45 patients with an average age of 53.9±12.4 years who underwent either FE facet-sparing TLIF (FE fs-TLIF) or FE facet-resecting TLIF (FE fr-TLIF). Patients were divided into 2 groups: the sentinel group (21 patients) using traditional sentinel pin techniques, and the GUARD group (24 patients) using the GUARD technique with delayed ligamentum flavectomy. Patient-reported outcomes included the visual analogue scale (VAS) for leg and back pain, and Oswestry Disability Index. Complication rates, including incidental durotomy, postoperative neurapraxia, and hematoma, were also documented. 
		                        		
		                        			Results:
		                        			Postoperative radicular pain in the legs was significantly reduced at 6 weeks in the GUARD group compared to the sentinel group (VAS: 2.201 vs. 3.267, p=0.021). The incidence of postoperative neurapraxia was markedly lower in the GUARD group (0% vs. 19%, p=0.047). Both groups showed similar improvements in disc height, segmental lordosis, and lumbar lordosis at the 1-year follow-up, with no significant differences in endplate injury or fusion rates. 
		                        		
		                        			Conclusion
		                        			The GUARD technique and delayed ligamentum flavectomy significantly enhance patient safety by reducing postoperative radicular pain and neurapraxia without incurring additional costs. These techniques are easy to learn and integrate into existing surgical workflows, offering a valuable improvement for surgeons performing FE-TLIF procedures. 
		                        		
		                        		
		                        		
		                        	
6.Transcriptomic characteristics analysis of bone from chronic osteomyelitis
Yang ZHANG ; Yi-Yang LIU ; Li-Feng SHEN ; Bing-Yuan LIN ; Dan SHOU ; Qiao-Feng GUO ; Chun ZHANG
China Journal of Orthopaedics and Traumatology 2024;37(5):519-526
		                        		
		                        			
		                        			Objective To explore the molecular mechanism of chronic osteomyelitis and to clarify the role of MAPK signal pathway in the pathogenesis of chronic osteomyelitis,by collecting and analyzing the transcriptional information of bone tissue in patients with chronic osteomyelitis.Methods Four cases of traumatic osteomyelitis in limbs from June 2019 to June 2020 were selected,and the samples of necrotic osteonecrosis from chronic osteomyelitis(necrotic group),and normal bone tissue(control group)were collected.Transcriptome information was collected by Illumina Hiseq Xten high throughput sequencing platform,and the gene expression in bone tissue was calculated by FPKM.The differentially expressed genes were screened by comparing the transcripts of the Necrotic group and control group.Genes were enriched by GO and KEGG.MAP3K7 and NFATC1 were selected as differential targets in the verification experiments,by using rat osteomyelitis animal model and im-munohistochemical analysis.Results A total of 5548 differentially expressed genes were obtained by high throughput sequenc-ing by comparing the necrotic group and control group,including 2701 up-regulated and 2847 down-regulated genes.The genes enriched in MAPK pathway and osteoclast differentiation pathway were screened,the common genes expressed in both MAPK and osteoclast differentiation pathway were(inhibitor of nuclear factor κ subunit Beta,IκBKβ),(mitogen-activated protein ki-nase 7,MAP3K7),(nuclear factor of activated t cells 1,NFATC1)and(nuclear factor Kappa B subunit 2,NFκB2).In rat os-teomyelitis model,MAP3K7 and NFATC1 were highly expressed in bone marrow and injured bone tissue.Conclusion Based on the transcriptome analysis,the MAPK signaling and osteoclast differentiation pathways were closely related to chronic os-teomyelitis,and the key genes IκBKβ,MAP3K7,NFATC1,NFκB2 might be new targets for clinical diagnosis and therapy of chronic osteomyelitis.
		                        		
		                        		
		                        		
		                        	
7.Innovative Nerve Root Protection in Full-Endoscopic Facet-Resecting Lumbar Interbody Fusion: Controlled Cage Glider Rotation Using the GUARD (Glider Used As a Rotary Device) Technique
Yu-Chia HSU ; Hao-Chun CHUANG ; Wei-Lun CHANG ; Yuan-Fu LIU ; Chao-Jui CHANG ; Yu-Meng HSIAO ; Yi-Hung HUANG ; Keng-Chang LIU ; Chien-Min CHEN ; Hyeun-Sung KIM ; Cheng-Li LIN
Neurospine 2024;21(4):1141-1148
		                        		
		                        			
		                        			 This video presents a case of L4–5 unstable spondylolisthesis treated with full-endoscopic transforaminal lumbar interbody fusion (Endo-TLIF), emphasizing the GUARD (Glider Used as a Rotary Device) technique for nerve root protection. This innovative approach involves controlled rotation of the cage glider before cage insertion to minimize the risk of nerve root injury, a significant complication in Endo-TLIF procedures. The GUARD technique, validated in previous cadaveric studies, provides enhanced safety during cage insertion by protecting the nerve root. A 48-year-old woman with a 3-year history of progressive low back pain and bilateral lower extremity radiculopathy (right-sided predominance) was diagnosed with L4–5 unstable spondylolisthesis and spinal stenosis. After failure of conservative management, she underwent uniportal full-endoscopic facet-resecting transforaminal lumbar interbody fusion using the GUARD technique. Postoperatively, the patient experienced significant symptomatic improvement and resolution of radiculopathy, without any intraoperative nerve root injury or postoperative neurological deficits. This case demonstrates the effectiveness of the GUARD technique in reducing neurological complications and improving patient outcomes. 
		                        		
		                        		
		                        		
		                        	
8.Reducing Postoperative Neurological Complications in Uniportal Full-Endoscopic Lumbar Interbody Fusion: Efficacy of the GUARD Technique Combined With Delayed Ligamentum Flavectomy
Hao-Chun CHUANG ; Yu-Chia HSU ; Yuan-Fu LIU ; Chao-Jui CHANG ; Yu-Meng HSIAO ; Yi-Hung HUANG ; Keng-Chang LIU ; Chien-Min CHEN ; Hyeun Sung KIM ; Cheng-Li LIN
Neurospine 2024;21(4):1199-1209
		                        		
		                        			 Objective:
		                        			Uniportal full-endoscopic transforaminal lumbar interbody fusion (FE-TLIF) carries a unique risk of nerve traction and abrasion injury during cage insertion. This study aims to evaluate the clinical efficacy of the GUARD technique and delayed ligamentum flavectomy in reducing postoperative radicular pain and neurapraxia in patients undergoing uniportal FE-TLIF. 
		                        		
		                        			Methods:
		                        			A retrospective analysis was conducted on 45 patients with an average age of 53.9±12.4 years who underwent either FE facet-sparing TLIF (FE fs-TLIF) or FE facet-resecting TLIF (FE fr-TLIF). Patients were divided into 2 groups: the sentinel group (21 patients) using traditional sentinel pin techniques, and the GUARD group (24 patients) using the GUARD technique with delayed ligamentum flavectomy. Patient-reported outcomes included the visual analogue scale (VAS) for leg and back pain, and Oswestry Disability Index. Complication rates, including incidental durotomy, postoperative neurapraxia, and hematoma, were also documented. 
		                        		
		                        			Results:
		                        			Postoperative radicular pain in the legs was significantly reduced at 6 weeks in the GUARD group compared to the sentinel group (VAS: 2.201 vs. 3.267, p=0.021). The incidence of postoperative neurapraxia was markedly lower in the GUARD group (0% vs. 19%, p=0.047). Both groups showed similar improvements in disc height, segmental lordosis, and lumbar lordosis at the 1-year follow-up, with no significant differences in endplate injury or fusion rates. 
		                        		
		                        			Conclusion
		                        			The GUARD technique and delayed ligamentum flavectomy significantly enhance patient safety by reducing postoperative radicular pain and neurapraxia without incurring additional costs. These techniques are easy to learn and integrate into existing surgical workflows, offering a valuable improvement for surgeons performing FE-TLIF procedures. 
		                        		
		                        		
		                        		
		                        	
9.Research and determination of related substances in flumazenil
Xue-yan MIAO ; Yuan YANG ; Si-si LU ; Jin-mei MO ; Lin-kai HUANG ; Jia-jun WEI ; Yi-ping GU
Acta Pharmaceutica Sinica 2024;59(6):1765-1772
		                        		
		                        			
		                        			 A high performance liquid chromatography (HPLC) method utilizing correction factors was established for the quantitative detection of related substances in flumazenil. Separation was achieved using an Agilent Pursuit XRs C18 column (250 mm × 4.6 mm, 5 μm) with an isocratic elution of dilute phosphoric acid, methanol, and tetrahydrofuran as the mobile phases. Correction factors calculated from a standard curve method were applied to determine the impurity content. The quantification of impurities in flumazenil was conducted using both external standard and correction factor methods, followed by validation and comparison of the two. For the identification of degradation products, a forced degradation approach was employed to prepare a flumazenil degradation solution, and the resulting impurities were confirmed by LC-MS analysis. The separation of flumazenil and its impurities was found to be efficient. The limits of quantification for impurities A, B, D, and E were established at 0.169 9, 0.314 7, 0.143 9, and 0.270 8 ng, respectively, with the limits of detection at 0.055 8, 0.096 9, 0.048 8, and 0.089 0 ng. These impurities demonstrated a strong linear relationship across the concentration ranges of 0.034 9-7.847 0, 0.038 7-8.710 7, 0.034 6-7.794 1, and 0.032 4-7.292 8 µg·mL-1, respectively (
		                        		
		                        	
		                				10.Study on the catalytic mechanism of triterpene C-29 carboxylases from Tripterygium wilfordii  based on directed evolution
		                			
		                			Pan-ting LIU ; Yi-feng ZHANG ; Yuan LIU ; Jie GAO ; Lin MA ; Xiao-yi WU ; Ya-ting HU ; Ping SU ; Shi-jun YUAN ; Xia-nan ZHANG ; Wei GAO
Acta Pharmaceutica Sinica 2024;59(6):1883-1893
		                        		
		                        			
		                        			 Celastrol and wilforlide A are the main active triterpenoids of the traditional Chinese medicine Lei Gong Teng, which have anti-tumour, anti-inflammatory and immunosuppressive activities, and are the material basis for the clinical efficacy of Lei Gong Teng-related Chinese medicinal preparations. By analysing the biosynthetic pathway of active ingredients, optimizing genetic elements and utilizing "cell factory" to produce triterpenoids heterologously will be an effective way to obtain from 
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail