1.Investigation on the mechanisms of Colquhounia Root Tablets in reversing vascular endothelial cell dysfunction of rheumatoid arthritis via modulating NOD2/SMAD3/VEGFA signaling axis
Bing-bing CAI ; Ya-wen CHEN ; Tao LI ; Yuan ZENG ; Yan-qiong ZHANG ; Na LIN ; Xia MAO ; Ya LIN
Acta Pharmaceutica Sinica 2025;60(2):397-407
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation, joint destruction, and functional impairment. Angiogenesis plays a key role in the pathological progression of RA with dysfunction of endothelial cells to promote synovial inflammation, sustain pannus formation, subsequently leading to joint damage. Colquhounia Root Tablets (CRT), a Chinese patent drug, has shown a satisfying clinical efficacy in treating RA, while the underlying mechanism by which CRT inhibits RA-associated angiogenesis remains unclear. In this study, we applied a research approach combining transcriptomic data analysis, bio-network mapping, and
2.Predicting the Risk of Arterial Stiffness in Coal Miners Based on Different Machine Learning Models.
Qian Wei CHEN ; Xue Zan HUANG ; Yu DING ; Feng Ren ZHU ; Jia WANG ; Yuan Jie ZOU ; Yuan Zhen DU ; Ya Jun ZHANG ; Zi Wen HUI ; Feng Lin ZHU ; Min MU
Biomedical and Environmental Sciences 2024;37(1):108-111
5.Three 2,3-diketoquinoxaline alkaloids with hepatoprotective activity from Heterosmilax yunnanensis
Rong-rong DU ; Xin-yi GUO ; Wen-jie QIN ; Hua SUN ; Xiu-mei DUAN ; Xiang YUAN ; Ya-nan YANG ; Kun LI ; Pei-cheng ZHANG
Acta Pharmaceutica Sinica 2024;59(2):413-417
Three 2,3-diketoquinoxaline alkaloids were isolated from
6.Single-cell RNA sequencing reveals the heterogeneity of astrocytes
Qingxi LONG ; Pingshu ZHANG ; Qing LIU ; Ya OU ; Lili ZHANG ; Xiaodong YUAN
Chinese Journal of Tissue Engineering Research 2024;28(1):139-146
BACKGROUND:Astrocytes are the most abundant cells in the central nervous system,and various subsets of astrocytes are heterogeneous,performing a variety of special functions.Single-cell RNA sequencing(scRNA-seq)technology developed in recent years has extended our understanding of astrocyte heterogeneity from the perspective of transcriptome profiling. OBJECTIVE:To summarize the heterogeneity of scRNA-seq technology in different time and space,and pathological states and expand our knowledge of astrocyte heterogeneity on both molecular and functional levels. METHODS:The relevant articles on astrocyte heterogeneity and scRNA-seq were searched on PubMed,Elsevier,and CNKI databases.The search terms were"astrocytes,scRNA-seq,heterogeneity,Alzheimer disease,spinal cord injury,multiple sclerosis"in Chinese and English.Finally,74 articles were selected for viewing after screening according to inclusion criteria. RESULTS AND CONCLUSION:scRNA-seq studies related to the heterogeneity of astrocytes have shown that astrocyte is significantly heterogeneous across four aspects:species,developmental stage,central nervous system region,and pathological state.(1)Unique expression of certain genes occurs in astrocytes of different species,and the discovery of species-specific genes is beneficial for the translation of clinical studies.(2)During astrocyte development,differential gene expression emerged in the cellular subtypes identified at each stage,which further refined the cellular lineage of astrocytes and laid the foundation for the study of astrocyte developmental trajectories and mechanisms.(3)The discovery of differential gene expression allows regional localization of different astrocyte subpopulations and assists in the diagnosis and treatment of neurological diseases.(4)Astrocyte heterogeneity revealed by scRNA-seq can provide specific markers at the time of disease diagnosis and identify potential therapeutic targets.(5)The heterogeneity of astrocytes exists in many aspects,interacts with each other and is complex.The mechanisms of its generation,maintenance and transformation remain unclear.At present,molecular research on the single-cell level is still lacking.Linking transcriptionally defined astrocyte subpopulations to cellular activity,behavior and disease markers in real time remains one of the great challenges in the field.
7.The evolution and application progress of non-modified drug target discovery CETSA technology
Guang-yuan LIU ; Ya-hui LI ; Wei ZHANG ; De-zhi KONG
Acta Pharmaceutica Sinica 2024;59(1):25-34
Understanding the research methods for drug protein targets is crucial for the development of new drugs, clinical applications of drugs, drug mechanisms, and the pathogenesis of diseases. Cellular thermal shift assay (CETSA), a target research method without modification, has been widely used since its development. Now, there are various CETSA-based technology combinations, such as mass spectrometry-based cellular thermal shift assay (MS-CETSA), isothermal dose response-cellular thermal shift assay (ITDR-CETSA), amplified luminescent proximity homogeneous assay-cellular thermal shift assay (Alpha-CETSA),
8.Antitumor Drugs Targeting Mutant p53 Protein
Ruo-Ya WANG ; Yuan ZHANG ; Ji-Hong ZHANG ; Fei YU
Progress in Biochemistry and Biophysics 2024;51(1):33-46
The p53 protein is an essential tumor suppressor in the human body that plays a critical role in preventing tumor formation by controlling cell cycle arrest and promoting apoptosis. Mutations in the p53 gene are frequently observed in more than 50% of tumor tissues and lead to the generation of mutant p53 proteins, which not only have a dominant-negative effect (DN) that hinders the function of wild-type p53 protein but also have gain-of-function (GOF) effects that stimulate tumor development by regulating cell metabolism, invasion, migration, and other processes. Therefore, mutant p53 protein has become a specific drug target for cancer therapy. However, the lack of a drug-binding pocket and smooth surface of mutant p53 proteins have made them undruggable targets for a long time. In recent years, with the development of high-throughput screening technology and an enhanced understanding of the structure and conformational changes exhibited by mutant p53 proteins, a multitude of small molecule compounds directed against mutant p53 protein have been identified, exhibiting substantial in vitro anti-tumor efficacy. Moreover, some of these compounds have entered clinical trials. This review summarized the direct and indirect strategies for the treatment of cancers targeting mutant p53, with a primary focus on the mechanisms of action of small molecule compounds that reactivate mutant p53 protein or degrade mutant p53 protein. The aim is to provide assistance for the development of innovative drugs targeting mutant p53 protein in the future.
9.Chemical constituents from Ganoderma angustisporum and their α-glucosidase inhibitory activities
Ya-Qin HUO ; Yu-Xi WANG ; Yu-Lian WEI ; Yi-Xuan ZHANG ; Hai-Sheng YUAN
Chinese Traditional Patent Medicine 2024;46(1):132-137
AIM To study the chemical constituents from Ganoderma angustisporum J.H.Xing,B.K.Cui&Y.C.Dai and their α-glucosidase inhibitory activities.METHODS The ethyl acetate extract from G.angustisporum was isolated and purified by silica gel,ODS,TLC and HPLC,then the structures of obtained compounds were identified by physicochemical properties and spectral data.pNPG method was used to evaluate their α-glucosidase inhibitory activities.RESULTS Seven compounds were isolated and identified as N-acetyl-L-phenylalanine ethyl ester(1),N-acetyl-L-phenylalanine methyl ester(2),4-hydroxy-17R-methylincisterol(3),6,8-di-O-methylaverufin(4),aversin(5),methyl 2-(4-hydroxyphenyl)aceate(6),5-toluene-1,3-diol(7).Compounds 1-2,4-7 showed inhibitory activities of α-glucosidase with IC50 values being(33.80±0.47),(45.45±7.95),(48.80±5.86),(39.48±2.82),(41.47±6.68),(55.38±10.12)μmol/L,and compound 1 showed good inhibitory activity.CONCLUSION Compound 1 is a new natural product.Compounds 2-7 are isolated from genus Ganoderma for the first time.Compounds 1-2,4-7 have α-glucosidase inhibitory activities.
10.Simultaneous GC-MS determination of sixteen pesticide residues and safety assessment for Lycii Fructus
Jia-Qi QIN ; Qiang-Qiang QI ; Ya-Jun ZHANG ; Yan WANG ; Si-Yuan ZHAO ; De-Yan CAO ; Mei-Lin ZHU
Chinese Traditional Patent Medicine 2024;46(1):143-149
AIM To establish a GC-MS method for the simultaneous content determination of sixteen pesticide residues in Lycii Fructus and perform safety assessment.METHODS The analysis was performed on DB-5MS chromatographic column(30 m×0.25 mm,0.25 μm)subjected to the programmed heating,with splitless injection of 1.0 μL dissolved sample at a flowing rate of 1.0 mL/min.Other parameters were as follows:injection port temperature of 250℃,electron impact ionization(EI),electron energy of 70 eV;ion source temperature of 230℃,multi-reaction monitoring mode,and collision gas.of high-purity N2.Pesticide residues with relatively high dietary risk were analyzed and discussed with regard to residue levels,dietary intake risk,risk ranking and cumulative exposure assessment.RESULTS Sixteen pesticides showed good linear relationships within their own ranges(r≥0.994 4),whose average recoveries were 70%-114%,with the RSDs of less than 2%.The highest average cyfluthrin residue of 0.999 2 mg/kg in Lycii Fructus of production regions and the highest average cypermethrin residue of 0.088 4 mg/kg in Lycii Fructus commodities were both detected.In Lycii Fructus of production regions with chronic hazard index(HI)value of 0.012 9 and acute HI value of 0.065 5 and their commodities with chronic HI of 0.001 2 and acute HI of 0.005 4,the pesticide residue of cypermethrin was the leading cause of chronic and acute dietary risk,and additionally,pyridaben within maximum residue limit(MRL)was the only detectectable highly toxic pesticide among the other most concerning pestcides of deltamethrin,pyridaben,chlorpyrifos,dichlorvos and methidathion.CONCLUSION There exist pesticide residues within MRL values in some samples of Lycii Fructus and the use of cypermethrin should be well-controlled.

Result Analysis
Print
Save
E-mail