1.Genetic Transformation for Medicinal Plants: A Review
Haoxiyu ZHANG ; Longfei LIN ; Yuan YUAN ; Yuling LIU ; Hui LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):323-330
Medicinal plants, with diverse species, high heterozygosity, and special breeding objectives, can be hardly bred with conventional hybridization techniques. Plant genetic transformation is highly selective and can specifically change the traits of plants, serving as an important technical means for the breeding of medicinal plants. The commonly used plant genetic transformation technologies include Agrobacterium-mediated transformation and particle bombardment. Agrobacterium-mediated transformation is the most widely used method, while it is not applicable to all medicinal plants due to the high specificity. Although not specific, particle bombardment is limited in application due to the low conversion efficiency and external force damage to cells and tissue. With the rise and development of nanotechnology, the emerging nanomaterial-mediated transformation has solved the problems of the above two technologies. However, limited by its late development, the mechanism of nanomaterial-mediated introduction of genetic materials into plant cells remains unclear, and thus this technology is rarely used in medicinal plants. This article summarizes the development status of several commonly used or emerging plant genetic transformation technologies such as Agrobacterium-mediated transformation, particle bombardment, and nanomaterial-mediated transformation, as well as their application in different medicinal plants. Furthermore, this article looks forward to the development trend of genetic transformation technologies for plants and their application prospects in medicinal plants and Chinese materia medica resources, aiming to provide new technical ideas for the genetic improvement and germplasm innovation of medicinal plants and inject new impetus into the sustainable development of Chinese materia medica resources.
2.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
3.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
4.Uniportal endoscopic decompression and debridement for infectious diseases of spine with neurological deficits: a retrospective study in China
Hui LV ; Jianhong ZHOU ; Yuan GUO ; Sheng LIAO ; Hui CHEN ; Fei LUO ; Jianzhong XU ; Zhongrong ZHANG ; Zehua ZHANG
Asian Spine Journal 2025;19(2):205-216
Methods:
This retrospective study analyzed 32 consecutive IDS patients who underwent UEDD surgery. Clinical features, laboratory data (erythrocyte sedimentation rate and C-reactive protein), and treatment outcomes were analyzed.
Results:
Definite microorganisms were identified in 27 patients (84.3%), with 24 (88.9%) meeting cure criteria. The cure rate was significantly higher in the detected pathogen group compared to the undetected pathogen group (88.9% vs. 80%; χ²=19.36, p<0.0001). Metagenomic next generation sequencing (mNGS) provided faster diagnosis (41.72±6.81 hours) compared to tissue culture (95.74±35.47 hours, p<0.05). The predominant causative pathogen was Mycobacterium tuberculosis, followed by Staphylococcus aureus. Significant improvements were observed in Visual Analog Scale pain scores, from a mean of 7.9 preoperatively to 1.06 at 1 year postoperatively. The Oswestry Disability Index revealed a similar trend, showing significant improvement (p<0.05).
Conclusions
UEDD is a viable alternative to traditional open surgery for managing IDS in high-risk patients. UEDD offers a dual therapeutic-diagnostic advantage during the initial admission phase, enabling simultaneous debridement, neurological decompression, and targeted biopsy in a single intervention. Compared with traditional tissue culture, mNGS enables rapid microbiological diagnosis and extensive pathogen coverage.
5.Uniportal endoscopic decompression and debridement for infectious diseases of spine with neurological deficits: a retrospective study in China
Hui LV ; Jianhong ZHOU ; Yuan GUO ; Sheng LIAO ; Hui CHEN ; Fei LUO ; Jianzhong XU ; Zhongrong ZHANG ; Zehua ZHANG
Asian Spine Journal 2025;19(2):205-216
Methods:
This retrospective study analyzed 32 consecutive IDS patients who underwent UEDD surgery. Clinical features, laboratory data (erythrocyte sedimentation rate and C-reactive protein), and treatment outcomes were analyzed.
Results:
Definite microorganisms were identified in 27 patients (84.3%), with 24 (88.9%) meeting cure criteria. The cure rate was significantly higher in the detected pathogen group compared to the undetected pathogen group (88.9% vs. 80%; χ²=19.36, p<0.0001). Metagenomic next generation sequencing (mNGS) provided faster diagnosis (41.72±6.81 hours) compared to tissue culture (95.74±35.47 hours, p<0.05). The predominant causative pathogen was Mycobacterium tuberculosis, followed by Staphylococcus aureus. Significant improvements were observed in Visual Analog Scale pain scores, from a mean of 7.9 preoperatively to 1.06 at 1 year postoperatively. The Oswestry Disability Index revealed a similar trend, showing significant improvement (p<0.05).
Conclusions
UEDD is a viable alternative to traditional open surgery for managing IDS in high-risk patients. UEDD offers a dual therapeutic-diagnostic advantage during the initial admission phase, enabling simultaneous debridement, neurological decompression, and targeted biopsy in a single intervention. Compared with traditional tissue culture, mNGS enables rapid microbiological diagnosis and extensive pathogen coverage.
6.Uniportal endoscopic decompression and debridement for infectious diseases of spine with neurological deficits: a retrospective study in China
Hui LV ; Jianhong ZHOU ; Yuan GUO ; Sheng LIAO ; Hui CHEN ; Fei LUO ; Jianzhong XU ; Zhongrong ZHANG ; Zehua ZHANG
Asian Spine Journal 2025;19(2):205-216
Methods:
This retrospective study analyzed 32 consecutive IDS patients who underwent UEDD surgery. Clinical features, laboratory data (erythrocyte sedimentation rate and C-reactive protein), and treatment outcomes were analyzed.
Results:
Definite microorganisms were identified in 27 patients (84.3%), with 24 (88.9%) meeting cure criteria. The cure rate was significantly higher in the detected pathogen group compared to the undetected pathogen group (88.9% vs. 80%; χ²=19.36, p<0.0001). Metagenomic next generation sequencing (mNGS) provided faster diagnosis (41.72±6.81 hours) compared to tissue culture (95.74±35.47 hours, p<0.05). The predominant causative pathogen was Mycobacterium tuberculosis, followed by Staphylococcus aureus. Significant improvements were observed in Visual Analog Scale pain scores, from a mean of 7.9 preoperatively to 1.06 at 1 year postoperatively. The Oswestry Disability Index revealed a similar trend, showing significant improvement (p<0.05).
Conclusions
UEDD is a viable alternative to traditional open surgery for managing IDS in high-risk patients. UEDD offers a dual therapeutic-diagnostic advantage during the initial admission phase, enabling simultaneous debridement, neurological decompression, and targeted biopsy in a single intervention. Compared with traditional tissue culture, mNGS enables rapid microbiological diagnosis and extensive pathogen coverage.
7.Targeting cAMP in D1-MSNs in the nucleus accumbens, a new rapid antidepressant strategy.
Yue ZHANG ; Jingwen GAO ; Na LI ; Peng XU ; Shimeng QU ; Jinqian CHENG ; Mingrui WANG ; Xueru LI ; Yaheng SONG ; Fan XIAO ; Xinyu YANG ; Jihong LIU ; Hao HONG ; Ronghao MU ; Xiaotian LI ; Youmei WANG ; Hui XU ; Yuan XIE ; Tianming GAO ; Guangji WANG ; Jiye AA
Acta Pharmaceutica Sinica B 2024;14(2):667-681
Studies have suggested that the nucleus accumbens (NAc) is implicated in the pathophysiology of major depression; however, the regulatory strategy that targets the NAc to achieve an exclusive and outstanding anti-depression benefit has not been elucidated. Here, we identified a specific reduction of cyclic adenosine monophosphate (cAMP) in the subset of dopamine D1 receptor medium spiny neurons (D1-MSNs) in the NAc that promoted stress susceptibility, while the stimulation of cAMP production in NAc D1-MSNs efficiently rescued depression-like behaviors. Ketamine treatment enhanced cAMP both in D1-MSNs and dopamine D2 receptor medium spiny neurons (D2-MSNs) of depressed mice, however, the rapid antidepressant effect of ketamine solely depended on elevating cAMP in NAc D1-MSNs. We discovered that a higher dose of crocin markedly increased cAMP in the NAc and consistently relieved depression 24 h after oral administration, but not a lower dose. The fast onset property of crocin was verified through multicenter studies. Moreover, crocin specifically targeted at D1-MSN cAMP signaling in the NAc to relieve depression and had no effect on D2-MSN. These findings characterize a new strategy to achieve an exclusive and outstanding anti-depression benefit by elevating cAMP in D1-MSNs in the NAc, and provide a potential rapid antidepressant drug candidate, crocin.
8.Effective Ingredients of Chinese Medicine in Prevention and Treatment of Osteoarthritis by Regulating Oxidative Stress: A Review
Shuang ZHANG ; Yingyan BI ; Xiaoting LIU ; Yusuo GONG ; Xuerui LIU ; Baohua YUAN ; Chenglong LU ; Xufan CHEN ; Ying WANG ; Jiaru GUANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(11):282-289
Osteoarthritis (OA) is a common degenerative joint disease with a rising incidence rate year by year. Treatment often relies on analgesics and non-steroidal anti-inflammatory drugs (NSAIDs), which can lead to gastrointestinal damage with long-term use and the recurrence of symptoms. Chinese medicine has a long history of preventing and treating OA, with widespread application and fewer side effects. It offers unique advantages such as a broad treatment scope, multiple targets, and pathways. The effective components of Chinese medicine can reduce the content of reactive oxygen species (ROS), relieve oxidative stress (OS) damage, and increase the antioxidant capacity of the body by interfering with the expression of biomarkers of OS response such as malondialdehyde (MDA) and superoxide dismutase (SOD). Through the modulation of signaling pathways such as nuclear factor E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), nuclear factor kappa B (NF-κB), c-Jun N-terminal kinase (JNK), NOD-like receptor protein 3 (NLRP3), and osteoprotegerin (OPG), they downregulated the expression of inflammatory factors such as interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), thereby effectively relieving local joint inflammation, protecting chondrocytes and bone tissue, inhibiting chondrocyte apoptosis, and further alleviating the progression of OA. Currently, there are still certain limitations in the medical research status and development trends of OA, necessitating the continued advancement of traditional Chinese medicine. This paper reviewed the literature on the regulation of OS response by effective components of Chinese medicine for the prevention and treatment of OA, providing new directions and ideas for future research.
9.HMGB1 gene knockout alleviates acute lung injury of sepsis mice via inhibiting TLR4/NF-κB pathway
Zhibin ZHANG ; Ruitong LI ; Weiwei ZHENG ; Xuerong LIN ; Ningning NIU ; Hui WANG ; Meng YUAN ; Shuchi HAN ; Qianlong XUE
Acta Universitatis Medicinalis Anhui 2024;59(2):248-253
Objective To study the effect of high mobility group box B1(HMGB1)gene knockout on alleviating a-cute lung injury and inhibiting toll-like receptor 4(TLR4)/nuclear factor-KB(NF-κB)pathway of sepsis mice.Methods Wild-type(WT)mice were divided into WT-Sham group and WT-model group,and HMGB1 knockout(KO)mice were divided into KO-sham group and KO-model group.Sepsis ALI model was established by cecal ligation and perforation in WT-model group and KO-model group.Sham operation was performed in WT-Sham group and KO-Sham group.24 h after modeling,the partial pressure of arterial oxygen(PaO2)was detected,oxy-genation index(OI)was calculated,pathological changes of lung tissue were detected and lung injury score was calculated,the concentrations of tumor necrosis factor-α(TNF-α),interleukin-1 β(IL-1 β),interleukin-6(IL-6),reactive oxygen species(ROS),malondialdehyde(MDA),superoxide dismutase(SOD),in serum and lung tissues and the expression of HMGB1,TLR4 and nuclear NF-κB in lung tissues were detected.Results The PaO2,OI and the concentration of SOD in serum and lung tissue of WT-model group were lower than those of WT-Sham group,the lung injury scores,the concentrations of TNF-α,IL-1 β,IL-6,ROS and MDA in serum and lung tissue,and the expression levels of HMGB1,TLR4 and nuclear NF-κB in lung tissue were higher than those in WT-Sham group(P<0.05).HMGB1 was not expressed in lung tissue of KO-model group,and the concentrations of PaO2,OI and the concentration of SOD in serum and lung tissue of KO-model group were higher than those of WT-model group,the lung injury scores,the concentrations of TNF-α,IL-1β,IL-6,ROS and MDA in serum and lung tissue,and the expression levels of TLR4 and nuclear NF-κB in lung tissue were lower than those of the WT-model group(P<0.05).Conclusion HMGB1 gene knockout alleviates acute lung injury of sepsis mice,the re-lated molecular mechanism may be the inhibition of TLR4/NF-κB pathway mediated inflammation and oxidative stress.
10.Analysis of epidemiological and clinical characteristics of 1247 cases of infectious diseases of the central nervous system
Jia-Hua ZHAO ; Yu-Ying CEN ; Xiao-Jiao XU ; Fei YANG ; Xing-Wen ZHANG ; Zhao DONG ; Ruo-Zhuo LIU ; De-Hui HUANG ; Rong-Tai CUI ; Xiang-Qing WANG ; Cheng-Lin TIAN ; Xu-Sheng HUANG ; Sheng-Yuan YU ; Jia-Tang ZHANG
Medical Journal of Chinese People's Liberation Army 2024;49(1):43-49
Objective To summarize the epidemiological and clinical features of infectious diseases of the central nervous system(CNS)by a single-center analysis.Methods A retrospective analysis was conducted on the data of 1247 cases of CNS infectious diseases diagnosed and treated in the First Medical Center of PLA General Hospital from 2001 to 2020.Results The data for this group of CNS infectious diseases by disease type in descending order of number of cases were viruses 743(59.6%),Mycobacterium tuberculosis 249(20.0%),other bacteria 150(12.0%),fungi 68(5.5%),parasites 18(1.4%),Treponema pallidum 18(1.4%)and rickettsia 1(0.1%).The number of cases increased by 177 cases(33.1%)in the latter 10 years compared to the previous 10 years(P<0.05).No significant difference in seasonal distribution pattern of data between disease types(P>0.05).Male to female ratio is 1.87︰1,mostly under 60 years of age.Viruses are more likely to infect students,most often at university/college level and above,farmers are overrepresented among bacteria and Mycobacterium tuberculosis,and more infections of Treponema pallidum in workers.CNS infectious diseases are characterized by fever,headache and signs of meningeal irritation,with the adductor nerve being the more commonly involved cranial nerve.Matagenomic next-generation sequencing improves clinical diagnostic capabilities.The median hospital days for CNS infectious diseases are 18.00(11.00,27.00)and median hospital costs are ¥29,500(¥16,000,¥59,200).The mortality rate from CNS infectious diseases is 1.6%.Conclusions The incidence of CNS infectious diseases is increasing last ten years,with complex clinical presentation,severe symptoms and poor prognosis.Early and accurate diagnosis and standardized clinical treatment can significantly reduce the morbidity and mortality rate and ease the burden of disease.

Result Analysis
Print
Save
E-mail