1.Effect of Quercetin on Cuproptosis in Rheumatoid Arthritis Rats and Its Mechanism via SLC31A1/FDX1 Pathway
Haoruo YANG ; Qiuai KOU ; Junhua REN ; Guo YUAN ; Bin YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):121-130
ObjectiveTo observe the influence and therapeutic effect of quercetin on cuproptosis in rheumatoid arthritis rats and to explore its possible mechanism based on the solute carrier family 31 member 1 (SLC31A1)/ferredoxin 1 (FDX1) pathway. MethodsSixty male SD rats were divided into six groups: A control group, a model group, high- and low-dose quercetin groups (150 and 50 mg·kg-1), a cuproptosis inhibitor (tetrathiomolybdate, TTM) group (10 mg·kg-1), and a methotrexate group (2 mg·kg-1), 10 rats in each group. Except for the control group, the model of rheumatoid arthritis (CIA) rats was established by type Ⅱ collagen induction method. After successful modeling, each drug group was intervened according to the corresponding dose of drugs, and the control group and the model group were given the same amount of normal saline by gavage, once a day, which lasted for 4 weeks. The swelling degree of rats' feet was observed, and the clinical arthritis scores were determined. The levels of serum rheumatoid factor (RF), matrix metalloproteinase-3 (MMP-3), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-10 (IL-10), and ceruloplasmin (Cp) were detected by enzyme-linked immunosorbent assay (ELISA). The content of copper ion (Cu), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) in joint tissue was detected. Hematoxylin-eosin (HE) staining was used to observe the pathological changes of joint tissue. The levels of reactive oxygen species (ROS) and dihydrolipoic acid transacetylase (DLAT) were detected by immunofluorescence (IF). The protein and mRNA expression of SLC31A1, FDX1, lipoic acid synthase (LIAS), heat shock protein 70 (HSP70), pyruvate dehydrogenase E1 subunit β (PDHB), and copper transporting P-type ATPase β (ATP7B) was detected by immunohistochemistry (IHC) and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). ResultsCompared to the control group, the model group exhibited joint swelling and deformity, significantly increased clinical arthritis scores, obvious bone destruction, synovial hyperplasia, and inflammatory cell infiltration in joint tissue. In addition, the serum levels of RF, MMP-3, TNF-α, IL-1β, and Cp showed significant elevation, while the level of IL-10 was significantly reduced. The levels of Cu, MDA, ROS, and DLAT in joint tissue were markedly increased, whereas SOD and GSH content was significantly decreased. The protein and mRNA expression of SLC31A1 and HSP70 was significantly up-regulated, while the protein and mRNA expression of FDX1, LIAS, PDHB, and ATP7B was significantly down-regulated (P<0.01). Compared to the model group, each treatment group exhibited varying degrees of improvement in joint swelling and deformation as well as clinical arthritis scores in rats. Additionally, there was a reduction in joint bone destruction, inflammatory cell infiltration, and synovial hyperplasia in rats. Furthermore, the serum levels of RF, MMP-3, TNF-α, IL-1β, and Cp significantly decreased, while the level of IL-10 increased significantly. In joint tissue, the levels of Cu, MDA, ROS, and DLAT showed significant decreases, while SOD and GSH content exhibited significant increases. The protein and mRNA expression of SLC31A1 and HSP70 was down-regulated, while the protein and mRNA expression of FDX1, LIAS, PDHB, and ATP7B was up-regulated (P<0.05). ConclusionQuercetin effectively reduces synovial hyperplasia and inflammatory infiltration in rats with rheumatoid arthritis, thereby alleviating pathological damage to joint tissue. This effect may be attributed to the blockade of the SLC31A1/FDX1 signaling pathway activation and inhibition of excessive cuproptosis.
2.Bioinformatics Reveals Mechanism of Xiezhuo Jiedu Precription in Treatment of Ulcerative Colitis by Regulating Autophagy
Xin KANG ; Chaodi SUN ; Jianping LIU ; Jie REN ; Mingmin DU ; Yuan ZHAO ; Xiaomeng LANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):166-173
ObjectiveTo explore the potential mechanism of Xiezhuo Jiedu prescription in regulating autophagy in the treatment of ulcerative colitis (UC) by bioinformatics and animal experiments. MethodsThe differentially expressed genes (DEGs) in the colonic mucosal tissue of UC patients was obtained from the Gene Expression Omnibus (GEO), and those overlapped with autophagy genes were obtained as the differentially expressed autophagy-related genes (DEARGs). DEARGs were imported into Metascape and STRING, respectively, for gene ontology/Kyoto Encyclopedia of Genes and Genomics (GO/KEGG) enrichment analysis and protein-protein interaction (PPI) analysis. Finally, 15 key DEARGs were obtained. The core DEARGs were obtained by least absolute shrinkage and selection operator (LASSO) regression and receiver operating characteristic curve (ROC) analysis. The CIBERSORT deconvolution algorithm was used to analyze the immunoinfiltration of UC patients and the correlations between core DEARGs and immune cells. C57BL/6J mice were assigned into a normal group and a modeling group. The mouse model of UC was established by free drinking of 2.5% dextran sulfate sodium. The modeled mice were assigned into low-, medium-, and high-dose Xiezhuo Jiedu prescription and mesalazine groups according to the random number table method and administrated with corresponding agents by gavage for 7 days. The colonic mucosal morphology was observed by hematoxylin-eosin staining. The protein and mRNA levels of cysteinyl aspartate-specific proteinase 1 (Caspase-1), cathepsin B (CTSB), C-C motif chemokine-2 (CCL2), CXC motif receptor 4 (CXCR4), and hypoxia-inducing factor-1α (HIF-1α) in the colon tissue were determined by Western blot and real-time fluorescence quantitative polymerase chain reaction, respectively. ResultsThe dataset GSE87466 was screened from GEO and interlaced with autophagy genes. After PPI analysis, LASSO regression, and ROC analysis, the core DEARGs (Caspase-1, CCL2, CTSB, and CXCR4) were obtained. The results of immunoinfiltration analysis showed that the counts of NK cells, M0 macrophages, M1 macrophages, and dendritic cells in the colonic mucosal tissue of UC patients had significant differences, and core DEARGs had significant correlations with these immune cells. This result, combined with the prediction results of network pharmacology, suggested that the HIF-1α signaling pathway may play a key role in the regulation of UC by Xiezhuo Jiedu prescription. The animal experiments showed that Xiezhuo Jiedu prescription significantly alleviated colonic mucosal inflammation in UC mice. Compared with the normal group, the model group showed up-regulated protein and mRNA levels of caspase-1, CCL2, CTSB, CXCR4, and HIF-1α, which were down-regulated after treatment with Xiezhuo Jiedu prescription or mesalazine. ConclusionCaspase-1, CCL2, CTSB, and CXCR4 are autophagy genes that are closely related to the onset of UC. Xiezhuo Jiedu prescription can down-regulate the expression of core autophagy genes to alleviate the inflammation in the colonic mucosa of mice.
3.Relation between parental psychological control and depressive symptoms among secondary school students: the pathway of negative perfectionism and academic stress
Haiping ZENG ; Qiang ZHOU ; Yuan FANG ; Hongli NIU ; Yanzhen REN
Sichuan Mental Health 2025;38(1):71-77
BackgroundDepression is a prevalent emotional problem in adolescents, and parental psychological control is an important predictor of adolescent depression. However, existing research on the acting mechanism between the two is not adequate. ObjectiveTo explore the pathway of negative perfectionism and academic stress between parental psychological control and depressive symptoms among secondary school students, so as to provide references for reducing the incidence risk of depression in such population. MethodsFrom February to April 2023, 1 100 students across 2 middle schools and 2 high schools in Zhongshan city were selected as subjects. The survey was conducted adopting Parental Psychological Control Questionnaire, Chinese Frost Multidimensional Perfectionism Scale (CFMPS), sense of academic stress subscale in Mental Health Inventory of Middle School Student (MMHI-60) and Center for Epidemiological Studies-Depression Scale (CES-D). Spearman correlation analysis was adopted to examine the correlation between scores of all scales above, and Amos 24.0 was used to test the mediating path of negative perfectionism and academic stress between parental psychological control and depressive symptoms among secondary school students. ResultsAmong the 1 009 valid questionnaires withdrew (91.73% of the total), 261 students were detected to have depressive symptoms (25.87%). As the results of Spearman correlation analysis showed, the scores of the Parental Psychological Control Questionnaire, score of negative perfectionism dimension in CFMPS, score of sense of academic stress subscale in MMHI-60 and CES-D score were positively correlated with each other (r=0.323~0.644, P<0.05 or 0.01). The direct effect value of parental psychological control on depressive symptoms in secondary school students was 0.128 (95% CI: 0.061~0.201), accounting for 31.37% of the total effect. Negative perfectionism and academic stress played independently as intermediatory roles between parental psychological control and depressive symptoms in secondary school students, and the indirect effect values were 0.099 (95% CI: 0.068~0.133) and 0.100 (95% CI: 0.060~0.143), accounting for 24.27% and 24.51% of the total effect, respectively. Negative perfectionism and academic stress acted combinedly as the chain effect pathway between parental psychological control and depressve symptoms in secondary school students, with the indirect effect value of 0.081 (95% CI: 0.060~0.106) accounting for 19.85% of the total effect. ConclusionParental psychological control can affect the depressive symptoms among secondary school students directly, and through independent or chain paths of negative perfectionism and academic stress indirectly. [Funded by Zhongshan Social Welfare Technology Research Project (number, 2022B1060)]
4.Study on anti-atherosclerosis mechanism of blood components of Guanxin Qiwei tablets based on HPLC-Q-Exactive-MS/MS and network pharmacology
Yuan-hong LIAO ; Jing-kun LU ; Yan NIU ; Jun LI ; Ren BU ; Peng-peng ZHANG ; Yue KANG ; Yue-wu WANG
Acta Pharmaceutica Sinica 2025;60(2):449-458
The analysis presented here is based on the blood components of Guanxin Qiwei tablets, the key anti-atherosclerosis pathway of Guanxin Qiwei tablets was screened by network pharmacology, and the anti-atherosclerosis mechanism of Guanxin Qiwei tablets was clarified and verified by cell experiments. HPLC-Q-Exactive-MS/MS technique was used to analyze the components of Guanxin Qiwei tablets into blood, to determine the precise mass charge ratio of the compounds, and to conduct a comprehensive analysis of the components by using secondary mass spectrometry fragments and literature comparison. Finally, a total of 42 components of Guanxin Qiwei tablets into blood were identified. To better understand the interactions, we employed the Swiss Target Prediction database to predict the associated targets. Atherosclerosis (AS) disease targets were searched in disease databases Genecard, OMIM and Disgent, and 181 intersection targets of disease targets and component targets were obtained by Venny 2.1.0 software. Protein interactions were analyzed by String database. The 32 core targets were selected by Cytscape software. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed in DAVID database. It was found that the anti-atherosclerosis pathways of Guanxin Qiwei tablets mainly include lipid metabolism and atherosclerosis and AGE-RAGE signaling pathway in diabetic complications and other signal pathways. The core targets and the core compounds were interlinked, and it was found that cryptotanshinone and tanshinone ⅡA in Guanxin Qiwei tablets were well bound to TNF, PPAR
5.Biomimetic nanoparticle delivery systems b ased on red blood cell membranes for disease treatment
Chen-xia GAO ; Yan-yu XIAO ; Yu-xue-yuan CHEN ; Xiao-liang REN ; Mei-ling CHEN
Acta Pharmaceutica Sinica 2025;60(2):348-358
Nanoparticle delivery systems have good application prospects in the field of precision therapy, but the preparation process of nanomaterial has problems such as short
6.Diagnosis and treatment of pediatric sinusitis based on "the transmission of heat from gallbladder and lung" idea in Huangdi Neijing
Wenqing PAN ; Zhenhua YUAN ; Haolin WANG ; Qiongqiong XING ; Zichao DING ; Yiman DUAN ; Xianqing REN
Journal of Beijing University of Traditional Chinese Medicine 2025;48(3):312-317
Sinusitis is a prevalent nasal disease in children, characterized by chronic and difficult-to-treat symptoms. Its onset is related to nasal stagnation, gallbladder and lung dysfunctions. This article explores the root cause based on Huangdi Neijing by considering the physiological and pathological characteristics of children. The core pathogenesis of pediatric sinusitis is the transmission of heat from the gallbladder and lung to the brain and nose, disrupting normal nasal function. Wind and heat pathogens often persist, accumulate, and transform into turbid qi, which are common triggers of the disease. Evil qi retention and yin depletion are internal factors that cause the prolonged and unhealed condition of the disease. This article emphasizes individualized treatment approaches based on disease duration and the severity of pathogenic factors. If external pathogens remain uncleared, treatment should focus on dispelling wind, clearing heat, dispersing with pungent medicinals, and dredging nasal orifices. If internal fire is exuberant, clearing lung qi, inhibiting hyperactive liver yang, and clearing exuberant fire should be used to relieve stagnation. In chronic cases with residual pathogens and liver-kidney yin deficiency, nourishing yin, clearing fire, and moistening the nasal orifices are essential. When exuberant heat has subsided, but the symptom of a persistent runny nose continues, leading to the loss of healthy qi and damage to the lung and spleen, treatments that tonify the spleen, benefit the lung, and reinforce healthy qi should be adopted to relieve stagnation. These treatments aim to restore the balance of the body′s vital qi by addressing both the lingering symptoms and the underlying weakness of the lung and spleen. The diagnosis and treatment of pediatric sinusitis based on the theory of "the transmission of heat from gallbladder and lung" can help reduce the recurrence of sinusitis and alleviate symptoms, with the aim of broadening the approach of traditional Chinese medicine in treating this condition.
7.Comorbidity and associated factors of overweight/obesity and dental caries among primary and secondary school students in Guangxi
LUO Yuemei, REN Yiwen, CHEN Li, DONG Yonghui, YUAN Wen, MA Jun, DONG Yanhui, LI Yan, ZHOU Weiwen
Chinese Journal of School Health 2025;46(4):485-488
Objective:
To explore the comorbidity and associated factors of dental caries and overweight/obesity among primary and secondary school students in Guangxi, so as to provide a scientific basis for the development of targeted prevention strategies.
Methods:
A stratified cluster random sampling method was used to survey 178 700 students from the fourth grade of primary school to the third year of high school in Guangxi Zhuang Autonomous Region from September to November 2023, including physical examination, oral screening, and questionnaire survey. Chisquare tests and binary Logistic regression analysis were employed to investigate the related factors of the cooccurrence of dental caries and overweight/obesity among students.
Results:
The comorbidity rate of dental caries and overweight/obesity was 9.55%, with urban areas (9.95%) higher than rural counties (9.24%), boys (10.54%) higher than girls (8.54%), primary school students (11.49%) higher than senior high school students (8.92%) and junior high school students (8.05%), and nonboarding students (11.44%) higher than boarding students (7.94%), and all differences were statistically significant (χ2=26.07, 207.91, 471.54, 629.14,P<0.01). Multivariate Logistic regression analysis showed that consuming cereal for breakfast (OR=0.91, 95%CI=0.88-0.94), drinking milk in the past week (OR=0.89, 95%CI=0.83-0.95), meeting sleep standards (OR=0.95, 95%CI=0.91-0.99), and brushing teeth at least once a day (OR=0.82, 95%CI=0.73-0.93) had a lower risk of the comorbidity of dental caries and overweight/obesity. In contrast, drinking beverages in the past week (OR=1.14, 95%CI=1.09-1.20), consuming fried foods in the past week (OR=1.11, 95%CI=1.06-1.17), eating fruit ≥1 time every day (OR=1.06, 95%CI=1.02-1.11), consuming fruit ≥1 type every day (OR=1.07, 95%CI=1.01-1.12), and having fish, poultry, meat, or eggbased breakfasts (OR=1.03, 95%CI=1.05-1.13) had a higher risk of the comorbidity of dental caries and overweight/obesity (P<0.05).
Conclusions
Dietary habits and lifestyle behaviors are associated with the comorbidity of dental caries and overweight/obesity among primary and secondary school students in Guangxi. Guiding students to form healthy living habits is helpful to preven dental caries and overweight/obesity.
8.Dynamic Sequential Diagnosis and Treatment of Pediatric Nephrotic Syndrome Based on the "Sweat Pore-Qi and Liquid-Kidney Collaterals"
Zhenhua YUAN ; Mingyang CAI ; Yingying JIANG ; Jingjing WU ; Wenqing PAN ; Zichao DING ; Shuzi ZHANG ; Xianqing REN
Journal of Traditional Chinese Medicine 2025;66(10):1007-1010
Based on the viewpoint of "sweat pore-qi and liquid-kidney collaterals", it is believed that children's nephrotic syndrome is caused by the core mechanism of sweat pore constraint and closure, qi and liquid imbalance, and kidney collaterals impairment, and it is proposed that the treatment principle is to nourish the sweat pore, regulate qi and fluid, and supplement the kidney and unblock the collaterals. In clinic, guided by sequential therapy and according to the different disease mechanism characteristics of the four stages, including early stage of the disease, hormone induction stage, hormone reduction stage, hormone maintenance stage, the staged dynamic identification and treatment was applied. For early stage of the disease with edema due to yang deficiency, modified Zhenwu Decoction (真武汤) was applied to warm yang and drain water; for hormone induction stage with yin deficiency resulting in effulgent fire, modified Zhibai Dihuang Pill (知柏地黄丸) plus Erzhi Pill (二至丸) was used to enrich yin and reduce fire; for hormone reduction stage with qi and yin deficiency, modified Shenqi Dihuang Decoction (参芪地黄汤) was used to boost qi and nourish yin; for hormone maintenance stage, modified Shenqi Pill (肾气丸) was used to supplement yin and yang. Meanwhile, the treatment also attaches importance to the combination of vine-based or worm medicinals to dredge collaterals, so as to providing ideas for clinical treatment.
9.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes.
10.Establishment and Evaluation of Rat Model of Acute Myocardial Infarction in Coronary Heart Disease with Qi and Yin Deficiency Syndrome Based on Sleep Deprivation Combined with Coronary Artery Ligation
Yali SHI ; Yunxiao GAO ; Qiuyan ZHANG ; Yue YUAN ; Xiaoxiao CHEN ; Longxiao HU ; Junguo REN ; Jianxun LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):30-40
ObjectiveTo explore the construction and evaluation methods of a rat model of acute myocardial infarction(AMI) with Qi and Yin deficiency syndrome established by sleep deprivation combined with coronary artery ligation. MethodsThirty-six SD rats were randomly divided into a normal group(n=6), a myocardial infarction group(model A group, n=10), an acute sleep deprivation+myocardial infarction group(model B group, n=10), and a chronic sleep deprivation+myocardial infarction group(model C group, n=10) according to body weight. Rats in the normal group were not treated, rats in the model A group underwent only ligation of the left anterior descending coronary artery, rats in the model B group were sleep deprived for 96 h and then underwent ligation of the left anterior descending coronary artery, and rats in the model C group were sleep deprived for an additional 48 h each week with a 24 h rest period as one cycle for three weeks on the basis of the model B group. After coronary artery ligation in the model C group, the first week was defined as the starting point of the first sleep deprivation cycle, and indexes were tested weekly for rats in each group for 3 weeks. Electrocardiogram was used to determine the ligation of the left anterior descending coronary artery in rats, and small animal echocardiography was used to evaluate the cardiac function. The levels of serum creatine kinase(CK), creatine kinase isoenzyme(CK-MB), lactate dehydrogenase(LDH), cardiac troponin T(cTnT), interleukin-18(IL-18), and tumor necrosis factor-α(TNF-α) were detected by biochemical assays, and hematoxylin-eosin(HE) staining was used to evaluate the pathological changes of myocardial tissue in rats. The syndrome indicators of Qi and Yin deficiency were evaluated by general state and body weight, grip strength, facial temperature, paw temperature, rectal temperature, salivary flow rate, open field test, tongue color[red(R), green(G), and blue(B)] values, pulse amplitude changes, and enzyme-linked immunosorbent assay(ELISA) for the detection of expression levels of cyclic adenosine monophosphate(cAMP), cyclic guanosine monophosphate(cGMP), rat serum corticotropin-releasing factor(CRF), adrenocorticotropic hormone(ACTH), triiodothyronine(T3), tetraiodothyronine(T4), and corticosterone(CORT) in serum. ResultsIn terms of disease indicators, compared with the normal group, the ST segment of the electrocardiogram in each model group was significantly elevated, the echocardiographic parameters were decreased, the contents of myocardial enzymes and inflammatory factors were increased(P<0.01), and the myocardial tissue in the infarcted area was significantly damaged. In terms of syndrome indicators, compared with the normal group, the body weight of rats in the model B and C groups decreased at each time point, the grip strength of each model group decreased, the total distance traveled and the number of entries into the center in the open field test decreased, the immobility time increased, the facial and rectal temperatures of rats in the model B and C groups increased, the salivary flow rate of each model group decreased, the tongue color was bright red or light, the tongue body was dry or smooth like a mirror, lacking of moisture sensation, the R, G and B values of the tongue surface increased, the pulse amplitude changes decreased, and the contents of T3 and T4 increased, while the expressions of cAMP, CRF, ACTH and CORT in the model B and C groups increased(P<0.05, P<0.01). ConclusionContinuous sleep deprivation for 96 h in a multi-platform method combined with coronary artery ligation can construct a rat model of AMI with Qi and Yin deficiency syndrome, and the syndrome manifestations can be maintained for 3 weeks.


Result Analysis
Print
Save
E-mail