1.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
2.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
3.Effect of Anti-reflux Mucosal Ablation on Esophageal Motility in Patients With Gastroesophageal Reflux Disease: A Study Based on High-resolution Impedance Manometry
Chien-Chuan CHEN ; Chu-Kuang CHOU ; Ming-Ching YUAN ; Kun-Feng TSAI ; Jia-Feng WU ; Wei-Chi LIAO ; Han-Mo CHIU ; Hsiu-Po WANG ; Ming-Shiang WU ; Ping-Huei TSENG
Journal of Neurogastroenterology and Motility 2025;31(1):75-85
Background/Aims:
Anti-reflux mucosal ablation (ARMA) is a promising endoscopic intervention for proton pump inhibitor (PPI)-dependent gastroesophageal reflux disease (GERD). However, the effect of ARMA on esophageal motility remains unclear.
Methods:
Twenty patients with PPI-dependent GERD receiving ARMA were prospectively enrolled. Comprehensive self-report symptom questionnaires, endoscopy, 24-hour impedance-pH monitoring, and high-resolution impedance manometry were performed and analyzed before and 3 months after ARMA.
Results:
All ARMA procedures were performed successfully. Symptom scores, including GerdQ (11.16 ± 2.67 to 9.11 ± 2.64, P = 0.026) and reflux symptom index (11.63 ± 5.62 to 6.11 ± 3.86, P = 0.001), improved significantly, while 13 patients (65%) reported discontinuation of PPI. Total acid exposure time (5.84 ± 4.63% to 2.83 ± 3.41%, P = 0.024) and number of reflux episodes (73.05 ± 19.34 to 37.55 ± 22.71, P < 0.001) decreased significantly after ARMA. Improved esophagogastric junction (EGJ) barrier function, including increased lower esophageal sphincter resting pressure (13.89 ± 10.78 mmHg to 21.68 ± 11.5 mmHg, P = 0.034), 4-second integrated relaxation pressure (5.75 ± 6.42 mmHg to 9.99 ± 5.89 mmHg, P = 0.020), and EGJ-contractile integral(16.42 ± 16.93 mmHg · cm to 31.95 ± 21.25 mmHg · cm, P = 0.016), were observed. Esophageal body contractility also increased significantly (distal contractile integral, 966.85 ± 845.84 mmHg · s · cm to 1198.8 ± 811.74 mmHg · s · cm, P = 0.023). Patients with symptom improvement had better pre-AMRA esophageal body contractility.
Conclusions
ARMA effectively improves symptoms and reflux burden, EGJ barrier function, and esophageal body contractility in patients with PPIdependent GERD during short-term evaluation. Longer follow-up to clarify the sustainability of ARMA is needed.
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
5.Effect of Anti-reflux Mucosal Ablation on Esophageal Motility in Patients With Gastroesophageal Reflux Disease: A Study Based on High-resolution Impedance Manometry
Chien-Chuan CHEN ; Chu-Kuang CHOU ; Ming-Ching YUAN ; Kun-Feng TSAI ; Jia-Feng WU ; Wei-Chi LIAO ; Han-Mo CHIU ; Hsiu-Po WANG ; Ming-Shiang WU ; Ping-Huei TSENG
Journal of Neurogastroenterology and Motility 2025;31(1):75-85
Background/Aims:
Anti-reflux mucosal ablation (ARMA) is a promising endoscopic intervention for proton pump inhibitor (PPI)-dependent gastroesophageal reflux disease (GERD). However, the effect of ARMA on esophageal motility remains unclear.
Methods:
Twenty patients with PPI-dependent GERD receiving ARMA were prospectively enrolled. Comprehensive self-report symptom questionnaires, endoscopy, 24-hour impedance-pH monitoring, and high-resolution impedance manometry were performed and analyzed before and 3 months after ARMA.
Results:
All ARMA procedures were performed successfully. Symptom scores, including GerdQ (11.16 ± 2.67 to 9.11 ± 2.64, P = 0.026) and reflux symptom index (11.63 ± 5.62 to 6.11 ± 3.86, P = 0.001), improved significantly, while 13 patients (65%) reported discontinuation of PPI. Total acid exposure time (5.84 ± 4.63% to 2.83 ± 3.41%, P = 0.024) and number of reflux episodes (73.05 ± 19.34 to 37.55 ± 22.71, P < 0.001) decreased significantly after ARMA. Improved esophagogastric junction (EGJ) barrier function, including increased lower esophageal sphincter resting pressure (13.89 ± 10.78 mmHg to 21.68 ± 11.5 mmHg, P = 0.034), 4-second integrated relaxation pressure (5.75 ± 6.42 mmHg to 9.99 ± 5.89 mmHg, P = 0.020), and EGJ-contractile integral(16.42 ± 16.93 mmHg · cm to 31.95 ± 21.25 mmHg · cm, P = 0.016), were observed. Esophageal body contractility also increased significantly (distal contractile integral, 966.85 ± 845.84 mmHg · s · cm to 1198.8 ± 811.74 mmHg · s · cm, P = 0.023). Patients with symptom improvement had better pre-AMRA esophageal body contractility.
Conclusions
ARMA effectively improves symptoms and reflux burden, EGJ barrier function, and esophageal body contractility in patients with PPIdependent GERD during short-term evaluation. Longer follow-up to clarify the sustainability of ARMA is needed.
6.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
7.Effect of Anti-reflux Mucosal Ablation on Esophageal Motility in Patients With Gastroesophageal Reflux Disease: A Study Based on High-resolution Impedance Manometry
Chien-Chuan CHEN ; Chu-Kuang CHOU ; Ming-Ching YUAN ; Kun-Feng TSAI ; Jia-Feng WU ; Wei-Chi LIAO ; Han-Mo CHIU ; Hsiu-Po WANG ; Ming-Shiang WU ; Ping-Huei TSENG
Journal of Neurogastroenterology and Motility 2025;31(1):75-85
Background/Aims:
Anti-reflux mucosal ablation (ARMA) is a promising endoscopic intervention for proton pump inhibitor (PPI)-dependent gastroesophageal reflux disease (GERD). However, the effect of ARMA on esophageal motility remains unclear.
Methods:
Twenty patients with PPI-dependent GERD receiving ARMA were prospectively enrolled. Comprehensive self-report symptom questionnaires, endoscopy, 24-hour impedance-pH monitoring, and high-resolution impedance manometry were performed and analyzed before and 3 months after ARMA.
Results:
All ARMA procedures were performed successfully. Symptom scores, including GerdQ (11.16 ± 2.67 to 9.11 ± 2.64, P = 0.026) and reflux symptom index (11.63 ± 5.62 to 6.11 ± 3.86, P = 0.001), improved significantly, while 13 patients (65%) reported discontinuation of PPI. Total acid exposure time (5.84 ± 4.63% to 2.83 ± 3.41%, P = 0.024) and number of reflux episodes (73.05 ± 19.34 to 37.55 ± 22.71, P < 0.001) decreased significantly after ARMA. Improved esophagogastric junction (EGJ) barrier function, including increased lower esophageal sphincter resting pressure (13.89 ± 10.78 mmHg to 21.68 ± 11.5 mmHg, P = 0.034), 4-second integrated relaxation pressure (5.75 ± 6.42 mmHg to 9.99 ± 5.89 mmHg, P = 0.020), and EGJ-contractile integral(16.42 ± 16.93 mmHg · cm to 31.95 ± 21.25 mmHg · cm, P = 0.016), were observed. Esophageal body contractility also increased significantly (distal contractile integral, 966.85 ± 845.84 mmHg · s · cm to 1198.8 ± 811.74 mmHg · s · cm, P = 0.023). Patients with symptom improvement had better pre-AMRA esophageal body contractility.
Conclusions
ARMA effectively improves symptoms and reflux burden, EGJ barrier function, and esophageal body contractility in patients with PPIdependent GERD during short-term evaluation. Longer follow-up to clarify the sustainability of ARMA is needed.
8.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
9.Effects of Xiaozhong Zhitong Mixture (消肿止痛合剂) on Angiogenesis and the Dll4/Notch1 Signaling Pathway in Wound Tissue of Diabetic Foot Ulcer Model Rats
Xiao HAN ; Tao LIU ; Yuan SONG ; Jie CHEN ; Jiaxuan SHEN ; Jing QIAO ; Hengjie WANG ; Lewen WU ; Yazhou ZHAO
Journal of Traditional Chinese Medicine 2025;66(16):1695-1703
ObjectiveTo investigate the potential machanism of Xiaozhong Zhitong Mixture (消肿止痛合剂, XZM) in the treatment of diabetes foot ulcer (DFU). MethodsFifty SD rats were randomly divided into blank group, model group, XZM group, inhibitor group, XZM plus inhibitor group (combination group), with 10 rats in each group. Except for the blank group, rats were fed with high-sugar, high-fat, high-cholesterol diet, intraperitoneally injected with streptozotocin, and subjected to skin defect to establish DFU model. After successful modeling, the XZM group and the combination group were given 1 ml/(100 g·d)of XZM by gavage, while the blank group, model group, and inhibitor group were all given an equal volume of 0.9% sodium chloride injection by gavage. Thirty minutes later, the inhibitor group and the combination group were intraperitoneally injected with 5 mg/(kg·d) of Notch1 inhibitor DAPT. All groups were treated once a day. After 14 days of administration, the skin tissue from the dorsal foot of the blank group rats and wound tissue from the other groups were collected. The pathological changes of granulation tissue in the wound were detected using hematoxylin eosin (HE) staining. The microvascular density (MVD) in wounds was detected through immunohistochemical staining. Real time fluorescence quantitative polymerase chain reaction (RT-PCR) and western blotting were used to detect the mRNA and protein levels of Notch1 homolog (Notch1), Delta-like ligand 4 (Dll4), Delta-like ligand 4 (VEGF), and angiopoietin 2 (Ang-2), respectively. ResultsHistological results showed that the epidermal structure in the dorsal foot skin tissue of the rats in the blank group was intact. In the wound tissue of the model group, the epidermis exhibited excessive keratinization, vacuolar cytoplasm, and a large number of inflammatory cells infiltrating the tissue, while in the XZM group, a large amount of scab formation was observed in the epidermis, with no significant inflammatory cell infiltration and a noticeable increase in fibroblasts. In the combination group and the inhibitor group, partial epidermal scab formation was observed in the wound tissue with a small amount of inflammatory cell infiltration. Compared to those in the blank group, the MVD in the wound tissue increased in the model group, as well as the mRNA expression and protein levels of Notch1 and Dll4, while VEGFA and Ang-2 mRNA expression and protein levels significantly decreased (P<0.05 or P<0.01). Compared to those in the model group, the MVD in the wound tissue of all medication groups significantly increased, and the mRNA and protein levels of Notch1 and Dll4 decreased, while VEGFA and Ang-2 mRNA expression and protein levels increased (P<0.05 or P<0.01). Compared to the XZM group, the inhibitor group and the combination group showed decreased MVD in wound tissue, increased Notch1 and Dll4 mRNA and protein levels, and decreased expression of VEGFA and Ang-2 mRNA and proteins (P<0.05 or P<0.01). ConclusionXZM can effectively promote wound healing in DFU rats, and its mechanism of action may be related to the inhibition of Dll4/Notch1 signaling pathway in the wound tissue, therey promoting angiogenesis.
10.The Critical Roles of GABAergic Interneurons in The Pathological Progression of Alzheimer’s Disease
Ke-Han CHEN ; Zheng-Jiang YANG ; Zi-Xin GAO ; Yuan YAO ; De-Zhong YAO ; Yin YANG ; Ke CHEN
Progress in Biochemistry and Biophysics 2025;52(9):2233-2240
Alzheimer’s disease (AD), a progressive neurodegenerative disorder and the leading cause of dementia in the elderly, is characterized by severe cognitive decline, loss of daily living abilities, and neuropsychiatric symptoms. This condition imposes a substantial burden on patients, families, and society. Despite extensive research efforts, the complex pathogenesis of AD, particularly the early mechanisms underlying cognitive dysfunction, remains incompletely understood, posing significant challenges for timely diagnosis and effective therapeutic intervention. Among the various cellular components implicated in AD, GABAergic interneurons have emerged as critical players in the pathological cascade, playing a pivotal role in maintaining neural network integrity and function in key brain regions affected by the disease. GABAergic interneurons represent a heterogeneous population of inhibitory neurons essential for sustaining neural network homeostasis. They achieve this by precisely modulating rhythmic oscillatory activity (e.g., theta and gamma oscillations), which are crucial for cognitive processes such as learning and memory. These interneurons synthesize and release the inhibitory neurotransmitter GABA, exerting potent control over excitatory pyramidal neurons through intricate local circuits. Their primary mechanism involves synaptic inhibition, thereby modulating the excitability and synchrony of neural populations. Emerging evidence highlights the significant involvement of GABAergic interneuron dysfunction in AD pathogenesis. Contrary to earlier assumptions of their resistance to the disease, specific subtypes exhibit vulnerability or altered function early in the disease process. Critically, this impairment is not merely a consequence but appears to be a key driver of network hyperexcitability, a hallmark feature of AD models and potentially a core mechanism underlying cognitive deficits. For instance, parvalbumin-positive (PV+) interneurons display biphasic alterations in activity. Both suppressing early hyperactivity or enhancing late activity can rescue cognitive deficits, underscoring their causal role. Somatostatin-positive (SST+) neurons are highly sensitive to amyloid β-protein (Aβ) dysfunction. Their functional impairment drives AD progression via a dual pathway: compensatory hyperexcitability promotes Aβ generation, while released SST-14 forms toxic oligomers with Aβ, collectively accelerating neuronal loss and amyloid deposition, forming a vicious cycle. Vasoactive intestinal peptide-positive (VIP+) neurons, although potentially spared in number early in the disease, exhibit altered firing properties (e.g., broader spikes, lower frequency), contributing to network dysfunction (e.g., in CA1). Furthermore, VIP release induced by 40 Hz sensory stimulation (GENUS) enhances glymphatic clearance of Aβ, demonstrating a direct link between VIP neuron function and modulation of amyloid pathology. Given their central role in network stability and their demonstrable dysfunction in AD, GABAergic interneurons represent promising therapeutic targets. Current research primarily explores three approaches: increasing interneuron numbers (e.g., improving cortical PV+ interneuron counts and behavior in APP/PS1 mice with the antidepressant citalopram; transplanting stem cells differentiated into functional GABAergic neurons to enhance cognition), enhancing neuronal activity (e.g., using low-dose levetiracetam or targeted activation of specific molecules to boost PV+ interneuron excitability, restoring neural network γ‑oscillations and memory; non-invasive neuromodulation techniques like 40 Hz repetitive transcranial magnetic stimulation (rTMS), GENUS, and minimally invasive electroacupuncture to improve inhibitory regulation, promote memory, and reduce Aβ), and direct GABA system intervention (clinical and animal studies reveal reduced GABA levels in AD-affected brain regions; early GABA supplementation improves cognition in APP/PS1 mice, suggesting a therapeutic time window). Collectively, these findings establish GABAergic interneuron intervention as a foundational rationale and distinct pathway for AD therapy. In conclusion, GABAergic interneurons, particularly the PV+, SST+, and VIP+ subtypes, play critical and subtype-specific roles in the initiation and progression of AD pathology. Their dysfunction significantly contributes to network hyperexcitability, oscillatory deficits, and cognitive decline. Understanding the heterogeneity in their vulnerability and response mechanisms provides crucial insights into AD pathogenesis. Targeting these interneurons through pharmacological, neuromodulatory, or cellular approaches offers promising avenues for developing novel, potentially disease-modifying therapies.

Result Analysis
Print
Save
E-mail