1.Clinical Efficacy of Modified Huangqi Chifengtang in Treatment of IgA Nephropathy Patients and Exploration of Dose-effect Relationship of Astragali Radix
Xiujie SHI ; Meiying CHANG ; Yue SHI ; Ziyan ZHANG ; Yifan ZHANG ; Qi ZHANG ; Hangyu DUAN ; Jing LIU ; Mingming ZHAO ; Yuan SI ; Yu ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):9-16
ObjectiveTo explore the dose-effect relationship and safety of high, medium, and low doses of raw Astragali Radix in the modified Huangqi Chifengtang (MHCD) for treating proteinuria in immunoglobulin A (IgA) nephropathy, and to provide scientific evidence for the clinical use of high-dose Astragali Radix in the treatment of proteinuria in IgA nephropathy. MethodsA total of 120 patients with IgA nephropathy, diagnosed with Qi deficiency and blood stasis combined with wind pathogen and heat toxicity, were randomly divided into a control group and three treatment groups. The control group received telmisartan combined with a Chinese medicine placebo, while the treatment groups were given telmisartan combined with MHCD containing different doses of raw Astragali Radix (60, 30, 15 g). Each group contained 30 patients, and the treatment period was 12 weeks. Changes in 24-hour urinary protein (24 hUTP), traditional Chinese medicine (TCM) syndrome scores, effective rate, and renal function were observed before and after treatment. Safety was assessed by monitoring liver function and blood routine. ResultsAfter 12 weeks of treatment, 24 hUTP significantly decreased in the high, medium, and low-dose groups, as well as the control group (P<0.05, P<0.01). The TCM syndrome scores in the high, medium, and low-dose groups also significantly decreased (P<0.01). Comparisons between groups showed that the 24 hUTP in the high-dose group was significantly lower than in the medium, low-dose, and control groups (P<0.05, P<0.01), and the 24 hUTP in the medium-dose group was significantly lower than in the control group (P<0.05). The TCM syndrome scores in the high and medium-dose groups were significantly lower than in the low-dose and control groups (P<0.05, P<0.01). The total effective rates for proteinuria in the high, medium, low-dose, and control groups were 92.59% (25/27), 85.19% (23/27), 60.71% (17/28), and 57.14% (16/28), respectively. The effective rates in the high and medium-dose groups were significantly higher than in the low-dose and control groups (χ2=13.185, P<0.05, P<0.01). The effective rates for TCM syndrome scores in the high, medium, low-dose, and control groups were 88.89% (24/27), 81.48% (22/27), 71.43% (20/28), and 46.43% (13/28), respectively. The efficacy of TCM syndrome scores in the high and medium-dose groups was significantly higher than in the control group (χ2=14.053, P<0.01). Compared with pre-treatment values, there was no statistically significant difference in eGFR and serum creatinine in the high and medium-dose groups. However, eGFR significantly decreased in the low-dose and control groups after treatment (P<0.05), and serum creatinine levels increased significantly in the control group (P<0.05). No statistically significant differences were observed in urea nitrogen, uric acid, albumin, total cholesterol, triglycerides, liver function, and blood routine before and after treatment in any group. ConclusionThere is a dose-effect relationship in the treatment of IgA nephropathy with high, medium, and low doses of raw Astragali Radix in MHCD. The high-dose group exhibited the best therapeutic effect and good safety profile.
2.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
3.Value of different noninvasive diagnostic models in the diagnosis of esophageal and gastric varices with significant portal hypertension in compensated hepatitis B cirrhosis
Cheng LIU ; Jiayi ZENG ; Mengbing FANG ; Zhiheng CHEN ; Bei GUI ; Fengming ZHAO ; Jingkai YUAN ; Chaozhen ZHANG ; Meijie SHI ; Yubao XIE ; Xiaoling CHI ; Huanming XIAO
Journal of Clinical Hepatology 2025;41(2):263-268
ObjectiveTo investigate the value of different noninvasive diagnostic models in the diagnosis of esophageal and gastric varices since there is a high risk of esophageal and gastric varices in patients with compensated hepatitis B cirrhosis and significant portal hypertension, and to provide a basis for the early diagnosis of esophageal and gastric varices. MethodsA total of 108 patients with significant portal hypertension due to compensated hepatitis B cirrhosis who attended Guangdong Provincial Hospital of Traditional Chinese Medicine from November 2017 to November 2023 were enrolled, and according to the presence or absence of esophageal and gastric varices under gastroscopy, they were divided into esophageal and gastric varices group (GOV group) and non-esophageal and gastric varices group (NGOV group). Related data were collected, including age, sex, imaging findings, and laboratory markers. The chi-square test was used for comparison of categorical data between groups; the least significant difference t-test was used for comparison of normally distributed continuous data between groups, and the Mann-Whitney U test was used for comparison of non-normally distributed continuous data between groups. The receiver operating characteristic (ROC) curve was plotted to evaluate the diagnostic value of five scoring models, i.e., fibrosis-4 (FIB-4), LOK index, LPRI, aspartate aminotransferase-to-platelet ratio index (APRI), and aspartate aminotransferase/alanine aminotransferase ratio (AAR). The binary logistic regression method was used to establish a combined model, and the area under the ROC curve (AUC) was compared between the combined model and each scoring model used alone. The Delong test was used to compare the AUC value between any two noninvasive diagnostic models. ResultsThere were 55 patients in the GOV group and 53 patients in the NGOV group. Compared with the NGOV group, the GOV group had a significantly higher age (52.64±1.44 years vs 47.96±1.68 years, t=0.453, P<0.05) and significantly lower levels of alanine aminotransferase [42.00 (24.00 — 17.00) U/L vs 82.00 (46.00 — 271.00) U/L, Z=-3.065, P<0.05], aspartate aminotransferase [44.00 (32.00 — 96.00) U/L vs 62.00 (42.50 — 154.50) U/L,Z=-2.351, P<0.05], and platelet count [100.00 (69.00 — 120.00)×109/L vs 119.00 (108.50 — 140.50)×109/L, Z=-3.667, P<0.05]. The ROC curve analysis showed that FIB-4, LOK index, LPRI, and AAR used alone had an accuracy of 0.667, 0.681, 0.730, and 0.639, respectively, in the diagnosis of esophageal and gastric varices (all P<0.05), and the positive diagnostic rates of GOV were 69.97%, 65.28%, 67.33%, and 58.86%, respectively, with no significant differences in AUC values (all P>0.05), while APRI used alone had no diagnostic value (P>0.05). A combined model (LAF) was established based on the binary logistic regression analysis and had an AUC of 0.805 and a positive diagnostic rate of GOV of 75.80%, with a significantly higher AUC than FIB-4, LOK index, LPRI, and AAR used alone (Z=-2.773,-2.479,-2.206, and-2.672, all P<0.05). ConclusionFIB-4, LOK index, LPRI, and AAR have a similar diagnostic value for esophageal and gastric varices in patients with compensated hepatitis B cirrhosis and significant portal hypertension, and APRI alone has no diagnostic value. The combined model LAF had the best diagnostic efficacy, which provides a certain reference for clinical promotion and application.
4.Chemical consitituents and hypoglycemic activity of Qinhuai No. 1 Rehmannia glutinosa
Meng YANG ; Zhi-you HAO ; Xiao-lan WANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Shi-qi ZHOU ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2025;60(1):205-210
Eight compounds were isolated and purified from the ethyl acetate part of 70% acetone extract of
5.Luteolin improves myocardial cell death induced by serum from rats with spinal cord injury
Wenwen ZHANG ; Mengru XU ; Yuan TIAN ; Lifei ZHANG ; Shu SHI ; Ning WANG ; Yuan YUAN ; Li WANG ; Haihu HAO
Chinese Journal of Tissue Engineering Research 2025;29(1):38-43
BACKGROUND:Cardiac dysfunction due to spinal cord injury is an important factor of death in patients with spinal cord injury;however,the specific mechanism is still not clear.Therefore,revealing the mechanism of cardiac dysfunction in spinal cord injury patients is of great significance to improve their quality of life and survival rate. OBJECTIVE:To investigate the mechanism of luteolin in improving serum-induced myocardial cell death in spinal cord injury rats. METHODS:Allen's impact instrument was used to damage the spine T9-T11 of male SD rats to establish a spinal cord injury model meanwhile a sham operation group was set as the control group.The serum of rats of each group was collected.H9c2 cells were divided into a blank control group,a sham operated rat serum group,a spinal cord injury rat serum group and a luteolin pretreatment group.The cells in blank control group were only cultured with ordinary culture medium.The cells in the sham operated rat serum group were treated with medium containing 10%serum from sham operated rat.The cells in the spinal cord injury rat serum group were treated with medium containing 10%serum from spinal cord injury rat.The cells in the luteolin pretreatment group were precultured with a final concentration of 20 μmol/L luteolin for 4 hours and then changed to a medium containing 10%rat serum from spinal cord injury rat.After 24 hours of culture,the survival rate of each group of H9c2 cells was measured by CCK-8 assay.Western blot assay was used to detect the expression of autophagy related protein LC3 and p62 in H9c2 cells in each group. RESULTS AND CONCLUSION:Compared with the blank control group,there was no significant change in cell survival rate in the sham operated rat serum group(P>0.05).Compared with the sham operated rat serum group,the cell survival rate(P<0.01)and the expression of LC3 protein(P<0.05)in spinal cord injury rat serum group was significantly reduced,and the expression of p62 protein was significantly increased(P<0.05).Compared with the spinal cord injury rat serum group,the survival rate of cells in the luteolin pretreatment group significantly increased(P<0.000 1);the expression of LC3 protein significantly increased(P<0.05),and the expression of p62 protein significantly decreased(P<0.05).The results indicate that luteolin may improve myocardial cell death induced by serum from rats with spinal cord injury by promoting autophagy.
6.Comparison of SEC-RI-MALLS and SEC-RID methods for determining molecular weight and molecular weight distribution of PLGA
WANG Baocheng ; ZHANG Xiaoyan ; ZHOU Xiaohua ; ZHAO Xun ; MA Congyu ; GAO Zhengsong ; SHI Haiwei ; YUAN Yaozuo ; HANG Taijun
Drug Standards of China 2025;26(1):110-116
Objective: To establish a method for determining the molecular weight and molecular weight distribution of Poly(Lactide-co-Glycolide Acid) (PLGA) using Size Exclusion Chromatography-Refractive Index-Multiangle Laser Light Scattering (SEC-RI-MALLS) and Size Exclusion Chromatography-Refractive Index (SEC-RID), and to compare the results obtained from these two methods.
Methods: For SEC-RI-MALLS, tetrahydrofuran was used as the mobile phase, Shodex GPC KF-803L was employed as the chromatographic column with a flow rate of 1 mL·min-1, column temperature at 30 ℃, and an injection volume of 100 μL. For SEC-RID, tetrahydrofuran was also used as the mobile phase, Agilent PLgel 5 μm MIXD-D was used as the chromatographic column with a flow rate of 1 mL·min-1, column temperature at 30 ℃, differential detector temperature at 35 ℃, and an injection volume of 20 μL. The molecular weight and molecular weight distribution were calculated using Agilent’s GPC software. The newly established methods were validated methodologically, and the molecular weight and molecular weight distribution of 13 batches of samples were determined.
Results: The precision, accuracy, stability, and repeatability tests for SEC-RI-MALLS showed RSD values of 1.35%, 1.58%, 1.53%, and 1.26%, respectively. The SEC-RID method exhibited good linearity (r=0.999 9), with RSD values for precision, accuracy, stability, and repeatability tests (n=6) of 2.05%, 1.62%, 1.30%, and 2.97%, respectively. The results obtained from SEC-RI-MALLS were lower than those from SEC-RID, and the molecular weight distribution coefficient was smaller, but the results from the paired T-test performed with the value measured by SEC-RID method and the value measured by SEC-RI-MALLS method multiplied a conversion coefficient of 1.5 showed no significant difference between the two methods.
Conclusion: Both methods are stable and reliable, and can be used for the determination of PLGA molecular weight and molecular weight distribution based on the specific situations.
7.Sufei Pingchuan Formula (肃肺平喘方) for the Treatment of Bronchiectasis Patients Combined with Airflow Limitation of Phlegm-Heat Obstructing the Lung and Lung-Spleen Qi Deficiency Syndrome: A Randomised Controlled Trial
Shasha YUAN ; Haiyan ZHANG ; Xia SHI ; Bing WANG ; Xiaodong CONG ; Qing MIAO
Journal of Traditional Chinese Medicine 2025;66(6):581-587
ObjectiveTo evaluate the effectiveness and safety of Sufei Pingchuan Formula (肃肺平喘方) in the treatment of bronchiectasis with airflow limitation, phlegm-heat obstructing the lung, and lung-spleen qi deficiency syndrome. MethodsA randomized, double-blind, placebo-controlled trial was conducted. A total of 72 patients with stable bronchiectasis with airflow limitation of phlegm-heat obstructing the lung and lung-spleen qi deficiency syndrome were randomly divided into treatment group and control group, with 36 cases in each group. On the basis of regular inhalation of tiotropium bromide inhalation spray, the treatment group was given Sufei Pingchuan Formula granules, and the control group was given Sufei Pingchuan Formula granule simulant. The course of treatment in both groups was 12 weeks. The pulmonary function of both groups before and after treatment was observed, specifically focusing on forced expiratory volume in one second (FEV1); the modified British Medical Research Council (mMRC) dyspnea scale, 24-hour sputum volume, COPD assessment test (CAT), and traditional Chinese medicine (TCM) syndrome scores were assessed before treatment and after 4, 8, and 12 weeks of treatment; acute exacerbations were recorded at weeks 4, 8, and 12; additionally, changes in routine blood tests, urinalysis, liver and kidney function, and adverse events were monitored before and after treatment. ResultsAfter treatment, 4 patients in the treatment group and 6 in the control group dropped out. After 12 weeks of treatment, FEV1 increased in both groups compared to pre-treatment levels (P<0.05), but the difference between groups was not statistically significant (P>0.05). Compared to before treatment, the treatment group showed a reduction in mMRC scores after 12 weeks (P<0.05) and a decrease in 24-hour sputum volume, CAT scores, and TCM syndrome scores at weeks 4, 8, and 12 (P<0.05). In the control group, 24-hour sputum volume decreased after 12 weeks (P<0.05), and TCM syndrome scores decreased at weeks 8 and 12 (P<0.05). Compared to the control group, the treatment group showed a greater reduction in mMRC scores at week 12 (P<0.05), a decrease in 24-hour sputum volume and TCM syndrome scores at weeks 4, 8, and 12 (P<0.05), and lower CAT scores at weeks 8 and 12 (P<0.05). The frequency and number of acute exacerbations in the treatment group were significantly lower than those in the control group at week 12 (P<0.05). No severe adverse events occurred in either group. ConclusionSufei Pingchuan Formula can improve the pulmonary function FEV1, the severity of dyspnea, reduce 24-hour sputum volume and frequent acute exacerbations, and improve the quality of life in patients with bronchiectasis and airflow limitation, with good safety.
8.Establishment and Evaluation of Rat Model of Acute Myocardial Infarction in Coronary Heart Disease with Qi and Yin Deficiency Syndrome Based on Sleep Deprivation Combined with Coronary Artery Ligation
Yali SHI ; Yunxiao GAO ; Qiuyan ZHANG ; Yue YUAN ; Xiaoxiao CHEN ; Longxiao HU ; Junguo REN ; Jianxun LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):30-40
ObjectiveTo explore the construction and evaluation methods of a rat model of acute myocardial infarction(AMI) with Qi and Yin deficiency syndrome established by sleep deprivation combined with coronary artery ligation. MethodsThirty-six SD rats were randomly divided into a normal group(n=6), a myocardial infarction group(model A group, n=10), an acute sleep deprivation+myocardial infarction group(model B group, n=10), and a chronic sleep deprivation+myocardial infarction group(model C group, n=10) according to body weight. Rats in the normal group were not treated, rats in the model A group underwent only ligation of the left anterior descending coronary artery, rats in the model B group were sleep deprived for 96 h and then underwent ligation of the left anterior descending coronary artery, and rats in the model C group were sleep deprived for an additional 48 h each week with a 24 h rest period as one cycle for three weeks on the basis of the model B group. After coronary artery ligation in the model C group, the first week was defined as the starting point of the first sleep deprivation cycle, and indexes were tested weekly for rats in each group for 3 weeks. Electrocardiogram was used to determine the ligation of the left anterior descending coronary artery in rats, and small animal echocardiography was used to evaluate the cardiac function. The levels of serum creatine kinase(CK), creatine kinase isoenzyme(CK-MB), lactate dehydrogenase(LDH), cardiac troponin T(cTnT), interleukin-18(IL-18), and tumor necrosis factor-α(TNF-α) were detected by biochemical assays, and hematoxylin-eosin(HE) staining was used to evaluate the pathological changes of myocardial tissue in rats. The syndrome indicators of Qi and Yin deficiency were evaluated by general state and body weight, grip strength, facial temperature, paw temperature, rectal temperature, salivary flow rate, open field test, tongue color[red(R), green(G), and blue(B)] values, pulse amplitude changes, and enzyme-linked immunosorbent assay(ELISA) for the detection of expression levels of cyclic adenosine monophosphate(cAMP), cyclic guanosine monophosphate(cGMP), rat serum corticotropin-releasing factor(CRF), adrenocorticotropic hormone(ACTH), triiodothyronine(T3), tetraiodothyronine(T4), and corticosterone(CORT) in serum. ResultsIn terms of disease indicators, compared with the normal group, the ST segment of the electrocardiogram in each model group was significantly elevated, the echocardiographic parameters were decreased, the contents of myocardial enzymes and inflammatory factors were increased(P<0.01), and the myocardial tissue in the infarcted area was significantly damaged. In terms of syndrome indicators, compared with the normal group, the body weight of rats in the model B and C groups decreased at each time point, the grip strength of each model group decreased, the total distance traveled and the number of entries into the center in the open field test decreased, the immobility time increased, the facial and rectal temperatures of rats in the model B and C groups increased, the salivary flow rate of each model group decreased, the tongue color was bright red or light, the tongue body was dry or smooth like a mirror, lacking of moisture sensation, the R, G and B values of the tongue surface increased, the pulse amplitude changes decreased, and the contents of T3 and T4 increased, while the expressions of cAMP, CRF, ACTH and CORT in the model B and C groups increased(P<0.05, P<0.01). ConclusionContinuous sleep deprivation for 96 h in a multi-platform method combined with coronary artery ligation can construct a rat model of AMI with Qi and Yin deficiency syndrome, and the syndrome manifestations can be maintained for 3 weeks.
9.Establishment and Evaluation of Rat Model of Myocardial Ischemia-reperfusion Injury with Phlegm and Blood Stasis Blocking Collaterals Syndrome Based on Metabolomics
Longxiao HU ; Jiabei GAO ; Weihao MA ; Jieming LU ; Yunxiao GAO ; Yue YUAN ; Qiuyan ZHANG ; Xiaoxiao CHEN ; Yali SHI ; Jianxun LIU ; Junguo REN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):41-51
ObjectiveTo explore the feasibility, evaluation methods and metabolic differences of high-fat diet(HFD) combined with myocardial ischemia-reperfusion injury(MIRI) to establish a rat model of myocardial ischemia-reperfusion with phlegm and blood stasis blocking collaterals syndrome(PBSBCS). MethodsThirty-two SD rats were randomly divided into the sham operation, HFD, MIRI, and MIRI+HFD groups. Rats in the sham operation and MIRI groups were fed a standard diet(regular chow), while the HFD and MIRI+HFD groups received a HFD for 10 weeks. Rats in the MIRI and MIRI+HFD groups underwent myocardial ischemia-reperfusion surgery, while the sham operation group underwent only thread placement without ligation. Cardiac function was assessed via small-animal echocardiography, including left ventricular ejection fraction(EF), left ventricular fractional shortening(FS), cardiac output(CO), and stroke volume(SV). Serum levels of creatine kinase(CK), CK-MB, triglyceride(TG), total cholesterol(TC), high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-C), lactate dehydrogenase(LDH), endothelin-1(ET-1), endothelial nitric oxide synthase(eNOS), tumor necrosis factor-α(TNF-α), interleukin-18(IL-18), oxidized LDL(ox-LDL), and cardiac troponin T(cTnT) were measured by biochemical assays and enzyme-linked immunosorbent assay(ELISA). Myocardial histopathology was evaluated via hematoxylin-eosin(HE) staining, while myocardial infarction and no-reflow area were assessed using 2,3,5-triphenyltetrazolium chloride(TTC), Evans blue, and thioflavin staining. Changes in syndrome characteristics[body weight, tongue surface red-green-blue [RGB] values, and pulse amplitude] of PBSBCS were recorded. Serum differential metabolites were analyzed by ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS). ResultsCompared with the sham operation group, the HFD and MIRI+HFD groups showed significant increases in body weight(P<0.01), RGB values and pulse amplitude decreased in the HFD, MIRI and MIRI+HFD groups, TC, TG, LDL-C and ox-LDL levels increased in the HFD and MIRI+HFD groups, while HDL-C decreased. Blood perfusion peak time and myocardial no-reflow area increased, serum eNOS level decreased, and CK-MB, LDH, and cTnT activities increased in the HFD, MIRI and MIRI+HFD groups(P<0.05, P<0.01). Whole blood viscosity was increased in the HFD group at medium shear rate, and in the MIRI and MIRI+HFD groups at low, medium and high shear rates(P<0.05, P<0.01). Platelet aggregation rate increased in the MIRI and MIRI+HFD groups, accompanied by elevated ET-1, TNF-α, and IL-18 levels, reduced cardiac function indices, expanded myocardial no-reflow and infarction areas, and increased serum CK, CK-MB, LDH, and cTnT activities(P<0.05, P<0.01). Compared with the MIRI group, the HFD and MIRI+HFD groups showed significant increase in body weight, TC, TG, LDL-C and ox-LDL levels, and significant decrease in HDL-C content(P<0.01). The MIRI+HFD group showed decrease in RGB values and pulse amplitude, and an increase in whole blood viscosity, platelet aggregation, blood perfusion peak time, myocardial no-reflow and infarction areas, elevated ET-1, TNF-α and IL-18 levels, decreased eNOS content, EF and SV, increased serum CK, CK-MB and cTnT activities, and worsened myocardial pathology(P<0.05). Compared with the HFD group, the MIRI+HFD group showed similar aggravated trends(P<0.05, P<0.01). Metabolomics results showed that 34 potential biomarkers involving 13 common metabolic pathways were identified in the MIRI+HFD group compared with the sham operation group. ConclusionThe MIRI group resembles blood stasis syndrome in hemodynamics and myocardial injury, and the HFD group mirrors phlegm-turbidity syndrome in lipid profiles and tongue characteristics. While the MIRI+HFD group aligns with PBSBCS in comprehensive indices, effectively simulating clinical features of coronary heart disease(CHD), which can be used for the evaluation of the pathological mechanism and pharmacodynamics of CHD with PBSBCS.
10.Establishment and Evaluation of Mouse Model of Ischemic Heart Disease with Qi and Yin Deficiency Syndrome Based on Proteomics
Qiuyan ZHANG ; Ying LI ; Yunxiao GAO ; Longxiao HU ; Yue YUAN ; Xiaoxiao CHEN ; Yali SHI ; Junguo REN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):52-61
ObjectiveTo explore the optimal construction method and the biological basis for establishing a mouse model of ischemic heart disease(IHD) with Qi and Yin deficiency syndrome by intraperitoneal injection of isoproterenol(ISO). MethodsA total of 144 male C57BL/6J mice were randomly assigned into three normal groups and nine model groups according to body mass, with 12 mice in each group. The model groups 1, 4, and 7 were administered ISO via intraperitoneal injection at a dose of 5 mg·kg-1·d-1 for four consecutive days, the model groups 2, 5, and 8 received ISO at a dose of 10 mg·kg-1·d-1 for seven consecutive days, while the model groups 3, 6, and 9 were given ISO at a dose of 15 mg·kg-1·d-1 for 14 consecutive days. The normal groups were administered an equivalent volume of normal saline via intraperitoneal injection. After the modeling process, body mass, 24-hour food and water intake, grip strength, and spontaneous activity of the mice were measured. Cardiac function was assessed using echocardiography, the serum levels of norepinephrine(NE), cyclic adenosine monophosphate(cAMP), and cyclic guanosine monophosphate(cGMP) were determined via enzyme-linked immunosorbent assay(ELISA). The content of adenosine triphosphate(ATP) in myocardial tissue was measured by biochemical analysis, while histopathological changes in myocardial tissue were observed via hematoxylin-eosin(HE) staining. An orthogonal experimental design was applied for intuitive analysis and variance analysis to screen the optimal modeling conditions of the mouse model of IHD with Qi and Yin deficiency syndrome. A data-dependent acquisition(DDA) proteomic technique was employed to quantitatively detect differentially expressed proteins in myocardial tissue between the optimal model group and the normal group. And bioinformatics analysis was conducted to explore the potential biological mechanisms underlying the Qi and Yin deficiency model of IHD. ResultsOrthogonal results showed that the injection cycle had a great influence on model establishment, and the optimal modeling condition was identified as intraperitoneal injection of ISO at 15 mg·kg-1·d-1 for 14 consecutive days. Under this condition, compared with the normal group, the model group demonstrated significant reductions in body mass, food intake, water intake, grip strength, total distance and average speed of exercise, ejection fraction(EF), fractional shortening(FS), serum levels of NE and cGMP, and myocardial ATP content(P<0.01), while immobility time, cAMP level, and the cAMP/cGMP value were significantly increased(P<0.05, P<0.01). HE staining results revealed that myocardial tissue in the model group had disordered cell arrangement, inflammatory cell infiltration, myocardial fiber rupture, and fibrous tissue proliferation. Proteomic analysis identified 141 differentially expressed proteins in the model group compared with the normal group, with 52 up-regulated and 89 down-regulated. Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis indicated that the cellular components(CC) were mainly related to mitochondria and the inner mitochondrial membrane, the biological processes(BP) were associated with complement activation, platelet activation, and responses to metal ions, suggesting that the potential functional pathways involved the complement and coagulation cascade, as well as porphyrin metabolism. ConclusionContinuous intraperitoneal injection of ISO at a dose of 15 mg·kg-1 for 14 days successfully establishes a mouse model of IHD with Qi and Yin deficiency syndrome, and the underlying mechanisms may be related to the regulation of iron ions by complement C3, C5 and Cp, and plays a role in the regulation through the BP of complement activation, platelet activation, and responses to metal ions, and the signaling pathways of the complement and coagulation cascade and porphyrin metabolism.

Result Analysis
Print
Save
E-mail