1.Clinical Efficacy of Modified Huangqi Chifengtang in Treatment of IgA Nephropathy Patients and Exploration of Dose-effect Relationship of Astragali Radix
Xiujie SHI ; Meiying CHANG ; Yue SHI ; Ziyan ZHANG ; Yifan ZHANG ; Qi ZHANG ; Hangyu DUAN ; Jing LIU ; Mingming ZHAO ; Yuan SI ; Yu ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):9-16
ObjectiveTo explore the dose-effect relationship and safety of high, medium, and low doses of raw Astragali Radix in the modified Huangqi Chifengtang (MHCD) for treating proteinuria in immunoglobulin A (IgA) nephropathy, and to provide scientific evidence for the clinical use of high-dose Astragali Radix in the treatment of proteinuria in IgA nephropathy. MethodsA total of 120 patients with IgA nephropathy, diagnosed with Qi deficiency and blood stasis combined with wind pathogen and heat toxicity, were randomly divided into a control group and three treatment groups. The control group received telmisartan combined with a Chinese medicine placebo, while the treatment groups were given telmisartan combined with MHCD containing different doses of raw Astragali Radix (60, 30, 15 g). Each group contained 30 patients, and the treatment period was 12 weeks. Changes in 24-hour urinary protein (24 hUTP), traditional Chinese medicine (TCM) syndrome scores, effective rate, and renal function were observed before and after treatment. Safety was assessed by monitoring liver function and blood routine. ResultsAfter 12 weeks of treatment, 24 hUTP significantly decreased in the high, medium, and low-dose groups, as well as the control group (P<0.05, P<0.01). The TCM syndrome scores in the high, medium, and low-dose groups also significantly decreased (P<0.01). Comparisons between groups showed that the 24 hUTP in the high-dose group was significantly lower than in the medium, low-dose, and control groups (P<0.05, P<0.01), and the 24 hUTP in the medium-dose group was significantly lower than in the control group (P<0.05). The TCM syndrome scores in the high and medium-dose groups were significantly lower than in the low-dose and control groups (P<0.05, P<0.01). The total effective rates for proteinuria in the high, medium, low-dose, and control groups were 92.59% (25/27), 85.19% (23/27), 60.71% (17/28), and 57.14% (16/28), respectively. The effective rates in the high and medium-dose groups were significantly higher than in the low-dose and control groups (χ2=13.185, P<0.05, P<0.01). The effective rates for TCM syndrome scores in the high, medium, low-dose, and control groups were 88.89% (24/27), 81.48% (22/27), 71.43% (20/28), and 46.43% (13/28), respectively. The efficacy of TCM syndrome scores in the high and medium-dose groups was significantly higher than in the control group (χ2=14.053, P<0.01). Compared with pre-treatment values, there was no statistically significant difference in eGFR and serum creatinine in the high and medium-dose groups. However, eGFR significantly decreased in the low-dose and control groups after treatment (P<0.05), and serum creatinine levels increased significantly in the control group (P<0.05). No statistically significant differences were observed in urea nitrogen, uric acid, albumin, total cholesterol, triglycerides, liver function, and blood routine before and after treatment in any group. ConclusionThere is a dose-effect relationship in the treatment of IgA nephropathy with high, medium, and low doses of raw Astragali Radix in MHCD. The high-dose group exhibited the best therapeutic effect and good safety profile.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.Network Pharmacology and Experimental Verification Unraveled The Mechanism of Pachymic Acid in The Treatment of Neuroblastoma
Hang LIU ; Yu-Xin ZHU ; Si-Lin GUO ; Xin-Yun PAN ; Yuan-Jie XIE ; Si-Cong LIAO ; Xin-Wen DAI ; Ping SHEN ; Yu-Bo XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2376-2392
ObjectiveTraditional Chinese medicine (TCM) constitutes a valuable cultural heritage and an important source of antitumor compounds. Poria (Poria cocos (Schw.) Wolf), the dried sclerotium of a polyporaceae fungus, was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia. Traditionally recognized for its diuretic, spleen-tonifying, and sedative properties, modern pharmacological studies confirm that Poria exhibits antioxidant, anti-inflammatory, antibacterial, and antitumor activities. Pachymic acid (PA; a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid), isolated from Poria, is a principal bioactive constituent. Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms, though these remain incompletely characterized. Neuroblastoma (NB), a highly malignant pediatric extracranial solid tumor accounting for 15% of childhood cancer deaths, urgently requires safer therapeutics due to the limitations of current treatments. Although PA shows multi-mechanistic antitumor potential, its efficacy against NB remains uncharacterized. This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking, dynamic simulations, and in vitro assays, aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays. MethodsThis study employed network pharmacology to identify potential targets of PA in NB, followed by validation using molecular docking, molecular dynamics (MD) simulations, MM/PBSA free energy analysis, RT-qPCR and Western blot experiments. Network pharmacology analysis included target screening via TCMSP, GeneCards, DisGeNET, SwissTargetPrediction, SuperPred, and PharmMapper. Subsequently, potential targets were predicted by intersecting the results from these databases via Venn analysis. Following target prediction, topological analysis was performed to identify key targets using Cytoscape software. Molecular docking was conducted using AutoDock Vina, with the binding pocket defined based on crystal structures. MD simulations were performed for 100 ns using GROMACS, and RMSD, RMSF, SASA, and hydrogen bonding dynamics were analyzed. MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex. In vitro validation included RT-qPCR and Western blot, with GAPDH used as an internal control. ResultsThe CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability. GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress, vesicle lumen, and protein tyrosine kinase activity. KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT, MAPK, and Ras signaling pathways. Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1, EGFR, SRC, and HSP90AA1. RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1, EGFR, and SRC while increasing the HSP90AA1 mRNA and protein levels. ConclusionIt was suggested that PA may exert its anti-NB effects by inhibiting AKT1, EGFR, and SRC expression, potentially modulating the PI3K/AKT signaling pathway. These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB.
7. Exploration of molecular mechanism of Selaginella moelledorffii Hieron. in treatment of laryngeal cancer based on network-based pharmacology, molecular docking techniques and experimental validation
Yuan-Yuan LI ; Xin-Zhou YANG ; Si-Si WANG ; Wen-Qi LIU ; Li KANG ; Xin-Zhou YANG ; Sefidkon FATEMEH
Chinese Pharmacological Bulletin 2024;40(2):352-362
Aim To explore the molecular mechanism of Selaginella moelledorffii Hieron. in the treatment of laryngeal cancer. Methods According to the relevant literature reports, the chemical constituents of S. moellendorffii were obtained, and the active ingredients were screened out through the SwissADME database, and the targets were screened through the PharmMapper database. The laryngeal cancer-related targets were collected by searching OMIM and other databases, and the Venny 2.1.0 online platform was used to obtain the intersection of the two. Protein interaction analysis of the potential targets was performed using the STRNG platform. GO functional analysis and KEGG pathway analysis was carried out using DAVID database. Visual networks were built with Cytoscape 3.8.0 software. Molecular docking was validated by SYBYL-X 2. 0 software. MTT method, Hoechst 33258 staining method and Western blotting were also used for validation. Results At the molecular level, a total of 110 active ingredients of S. moellendorffii and 82 drug targets were screened out, 1,608 targets related to laryngeal cancer, and intersection of 34 targets. GO analysis yielded 135 entries, and KEGG analysis yielded a total of 61 pathways. Molecular docking results showed that the 11 key active ingredients such as 2", 3"-dihydrooch-naflavone wood flavonoids and 4 core target proteins such as MAPK1 had 95. 5% of good docking activity. At the cellular level, SM-BFRE was screened for its strongest inhibitory effect on laryngeal cancer cell proliferation through MTT assay. Furthermore, Hoechst 33258 staining showed that the decrease in Hep-2 cell viability produced by SM-BFRE was related to cell apoptosis. Finally, Western blot verified that SM-BFRE inhibited PI3K/Akt/NF through inhibition- K B/COX-2 pathway to induce apoptosis in laryngeal cancer cells. Conclusions To sum up, it fully reflects the multicomponent, multi-target, and multi-channel synergistic effect of S. moellendorffii in the treatment of laryngeal cancer, and provides a theoretical reference for further elucidation of the mechanism of action of S. moellendorffii in the treatment of laryngeal cancer.
8.Association between ELL2 polymorphism and susceptibility to pleomorphic adenoma of salivary gland
Si-Yao YANG ; Yuan-Yuan WANG ; Jian-Bing LIU ; Zhi-Rong LIU
Medical Journal of Chinese People's Liberation Army 2024;49(2):171-176
Objective To analyze the correlation between the ELL2 gene 1119 T>C polymorphism and the susceptibility to pleomorphic adenoma of the salivary gland.Methods The pedigree of the pleomorphic adenoma family of salivary gland was drawn.The exons of ELL2 gene in 5 members of salivary pleomorphic adenoma family were sequenced.A case-control study was conducted.One hundred and twelve patients with pleomorphic adenoma of the salivary gland who visited the Department of Oral and Maxillofacial Surgery of Shanxi Bethune Hospital from January 2016 to July 2020 were taken as case group,and 176 healthy examinees from January 2019 to January 2020 were taken as control group with age and sex as matching conditions.The 1119 T>C polymorphism of ELL2 genes in the two groups were detected with high resolution melting(HRM)curve.Chi-square test was adopted to analyze the correlation between gene polymorphism and the occurrence of pleomorphic adenoma of the salivary gland,stratified analysis was performed to evaluate the synergistic effect of smoking and genotype,and real time quantitative reverse transcription polymerase chain reaction(RT-PCR)was used to detect the expression level of ELL2 in individuals with different genotypes.Results The 1119 T>C polymorphism site existed in the exon 8 of ELL2 gene in a family with pleomorphic adenoma of salivary gland.The results of case-control study showed that the genotype frequency of homozygous CC was significantly higher in patients with pleomorphic adenoma of salivary gland than that in the controls(24.1%vs.11.9%,P=0.002).Homozygous CC was associated with increased risk for developing pleomorphic adenoma of salivary gland(OR=3.059,95%CI 1.494-6.263)in this cohort.Stratification analysis showed that smoking and 1119C allele cooperated to increase the risk of pleomorphic adenoma of salivary gland(OR=3.200,95%CI 1.460-7.014).The expression level of ELL2 mRNA in CC genotype was significantly higher than that in individuals with CT or TT genotype(P<0.05).Conclusion The genetic variation of ELL2 may play an important role in the occurrence of pleomorphic adenoma of salivary gland,and smoking combined with the 1119C allele increased the risk of this disease.
9.Curative effect and prognosis of Zheng′s 4C suspension transumbilical laparoendoscopic single-site surgery for cervical cancer
Qiu-Min HE ; Chong-Yuan ZHANG ; Si-Si ZHANG ; Yao HU
Journal of Regional Anatomy and Operative Surgery 2024;33(2):162-165
Objective To investigate the effect of Zheng's 4C suspension transumbilical laparoendoscopic single-site surgery(TU-LSSS)in the treatment of cervical cancer,and analyze its prognosis.Methods A total of 92 patients with cervical cancer admitted to our hospital were selected and randomly divided into the control group(traditional laparoscopic surgery)and the observation group(Zheng's 4C suspension TU-LSSS),with 46 cases in each group.The perioperative related indicators of patients between the two groups were compared.The patients were followed up for 3 years,the progression-free survival(PFS)and overall survival(OS)were recorded,and the influencing factors of prognosis were analyzed.Results Compared with the control group,patients in the observation group had longer surgical time(P<0.05),less intraoperative bleeding(P<0.05),shorter recovery time for postoperative bowel sounds and hospital stay(P<0.05),higher postoperative 3-year PFS rate and 3-year OS rate(P<0.05).During 3-year follow-up,there were 11 cases of disease progression or death.The univariate analysis results showed that there were statistically significant differences in tumor diameter,clinical stage,lymph node metastasis,vascular infiltration,and treatment methods of patients between the good prognosis group and the poor prognosis group(P<0.05).The binary Logistic regression results showed that tumor diameter(≥4 cm),clinical stage(≥stage ⅠB2),lymph node metastasis,and vascular infiltration were the risk factors for the prognosis of patietns with cervical cancer(P<0.05),while Zheng's 4C suspension TU-LSSS was the protective factors(P<0.05).Conclusion Zheng's 4C suspension TU-LSSS can effectively promote the recovery of patients with cervical cancer,and improve 3-year PFS rate and 3-year OS rate.The prognosis is related to many factors,and targeted treatment should be performed according to different risk factors.
10.The influence of Liuwei Dihuang Wan on the behavior and TLR4/NF-κB signaling pathway of Alzheimer's disease model mice
Yong CUI ; Bing WANG ; Zhongkang ZHU ; Yuan XU ; Yanan GUAN ; Ruihao SI ; Danyu ZHAO ; Xu WANG
Chinese Journal of Behavioral Medicine and Brain Science 2024;33(2):109-115
Objective:To explore the effects of Liuwei Dihuang Wan on the behaviors and Toll-like receptor 4/nuclear factor kappa-B(TLR4/NF-κB) signal transduction pathway of amyloid β-precursor protein/presenilin-1(APP/PS1) double transgenic mice.Methods:Forty 3-month-old female APP/PS1 mice were randomly divided into model group, low-dose group(0.59 g/kg), medium-dose group(1.18 g/kg), high-dose group(2.36 g/kg)of Liuwei Dihuang Wan(gavaged according to grouped doses), and ibuprofen group(0.04 g/kg, gavage) using a random number table method, with 8 mice in each group.Eight 3-month-old wild-type female C57BL/6 mice with matched body weight were used as the control group.The mice in control group and model group were given an equal volume of 0.9% sodium chloride solution by gavage.The gavage administration was twice a day for a continuous period of 3 months.Morris water maze test was used to detect the learning and memory abilities of mice. ELISA was used to detect the serum levels of tumor necrosis factor-α (TNF-α), interleukin-1β(IL-1β) and immunohistochemistry was used to detect the levels of amyloid β-protein (Aβ), glial fibrillary acidic protein(GFAP) and NF-κB in hippocampal tissue.Western blot was used to detect the expression levels of TLR4, myeloid differentiation primary response gene 88(MyD88), and phosphorylated NF-κB(p-NF-κB) proteins in hippocampal tissue.The SPSS 20.0 software was used for data analysis. Multiple group comparisons were conducted by repeated measure ANOVA or one-way ANOVA.Results:The results of repeated measure ANOVA showed that as for the escape latency of the 6 groups of mice, the interaction effect between time and group was significant ( Finteraction=117.219, P<0.001). The escape latencies of mice in the 6 groups on the 5th day were all lower than those on the 1st day (all P<0.05). The escape latencies of mice in the ibuprofen group and the medium-dose and high-dose groups of Liuwei Dihuang Wan were lower than that in the model group from 1st day to 5th day(all P<0.05). On the 3rd to 5th day, the escape latencies of mice in the medium-dose and high-dose groups of Liuwei Dihuang Wan were lower than those in the low-dose group of Liuwei Dihuang Wan (all P<0.05). There were statistically significant differences in the percentage of residence time in the platform quadrant and the numbers of crossing platform among the 6 groups of mice ( F=5.451, 4.824, both P<0.05). The percentage of residence time in the platform quadrant (50.77±5.49)%, (54.39±5.71)%, (51.98±6.12)%), and the numbers of crossing platform((5.9±1.1) times, (6.0±1.3) times, (5.1±0.8) times) in the high-dose and medium-dose groups of Liuwei Dihuang Wan and the ibuprofen group were all higher than those in the model group ((27.32±3.22)%, (2.2±1.0) times )(all P<0.05). The immunohistochemical results showed that there were statistically significant differences in the integrated optical density values of Aβ, GFAP and NF-κB in the hippocampal tissues of 6 groups of mice ( F=57.52, 45.37, 79.10, all P<0.05). The integrated optical density values of Aβ, GFAP and NF-κB in the high-dose and medium-dose groups of Liuwei Dihuang Wan and the ibuprofen group were all lower than those in the model group (all P<0.05). And the integrated optical density values of Aβ, GFAP, and NF-κB in the high-dose and medium-dose groups of Liuwei Dihuang Wan were all lower than those in the low-dose group of Liuwei Dihuang Wan (all P<0.05). There were statistically significant differences in the levels of serum TNF-α and IL-1β detected by ELISA ( F=3.996, 6.395, both P<0.05) and the proteins levels of TLR4, MyD88, and p-NF-κB in hippocampal tissue detected by Western blot among the 6 groups( F=15.710, 3.522, 4.119, all P<0.05). The serum TNF-α and IL-1β levels in the high-dose and medium-dose groups of Liuwei Dihuang Wan and ibuprofen group were all lower than those in the model group (all P<0.05). The serum TNF-α ((18.90±2.33) ng/L, (21.56±2.49) ng/L) and IL-1β ((5.88±0.80) ng/L, (6.75±0.83) ng/L) levels in the high-dose and medium-dose groups of Liuwei Dihuang Wan were lower than those in the low-dose group ((30.77±2.89) ng/L, (9.11±1.27) ng/L) (all P<0.05). The protein expression levels of TLR4, MyD88, and p-NF-κB in the hippocampus of the high-dose and medium-dose groups of Liuwei Dihuang Wan and ibuprofen group were lower than those of the model group (all P<0.05). The protein expression levels of TLR4 ((0.254±0.091), (0.318±0.122)), MyD88 ((0.229±0.077), (0.386±0.119)), and p-NF-κB ((0.412±0.188), (0.358±0.119)) in the hippocampus of the high-dose and medium-dose groups of Liuwei Dihuang Wan were lower than those of the low-dose group ((0.617±0.172), (0.672±0.166), (0.799±0.227)) (all P<0.05). Conclusion:Liuwei Dihuang Wan can significantly alleviate learning and memory impairment in Alzheimer's disease model mice, possibly by inhibiting TLR4/NF-κB signal pathway, reducing TNF-α and IL-1β expression, thereby alleviate central immune inflammatory response and exert anti Alzheimer's disease effects.

Result Analysis
Print
Save
E-mail