1.Modern Clinical Application and Mechanism of Action of Chaihu Guizhi Ganjiangtang: A Review
Miaomiao MENG ; Zibo YUAN ; Kaili CHEN ; Jun ZHANG ; Zixuan YU ; Wei DENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):266-277
		                        		
		                        			
		                        			Chaihu Guizhi Ganjiangtang (CGG)is a classic prescription in the Treatise on Cold Damage,which has the effects of clearing and relieving stagnation heat in Shaoyang,warming and dissolving water drink,and relieving the pivot mechanism. It is a classic prescription for treating spleen deficiency and liver depression and stopping internal stagnation caused by water drink. The formula is exquisite and well-matched and is often modified and used by ancient and modern medical practitioners to treat various miscellaneous diseases of internal and external medicine,with significant therapeutic effects. In recent years,with the rapid development of modern pharmacology,research on the micro mechanism of CGG has been continuously developed and deepened,providing new ideas for the treatment of diseases with CGG. Therefore,the authors systematically searched databases such as China National Knowledge Infrastructure,Wanfang Data Knowledge Service Platform,VIP Database, and PubMed for literature on the clinical application and pharmacological mechanism of CGG published by Chinese and foreign scholars in recent years. This article summarized the literature from two aspects:the modern clinical application and mechanism of action of CGG and elaborated on the diseases treated by CGG in modern literature,involving digestive system,respiratory system,nervous system,endocrine system,circulatory system,urinary system,gynecology,as well as its application in reducing the side effects of radiotherapy and chemotherapy, gynecology, dermatology, ophthalmology, and orthopedics. At the same time,the mechanism of CGG in treating diseases may be related to anti-inflammatory,anti-oxidative stress, regulation of immunity, anti-fibrosis, anti-tumor, improvement of gastrointestinal flora and motility, protection of liver tissue, reduction of blood lipids and blood sugar, and regulation of hormone levels. 
		                        		
		                        		
		                        		
		                        	
2.Epidemiological characteristics and trends of other infectious diarrhea among children during 2014-2020
Chinese Journal of School Health 2025;46(7):922-925
		                        		
		                        			Objective:
		                        			To analyze the epidemiological characteristics and trends of other infectious diarrhea among children under 18 years old in Guangzhou City from 2014 to 2020, and to explore the correlation between climatic factors and the incidence of the disease, so as to provide reference for the early prevention of infectious diseases.
		                        		
		                        			Methods:
		                        			The data of cases of other infectious diarrhea and meteorological data of children under 18 years old in Guangzhou City from 2014 to 2020 were collected through the Chinese Infectious Disease Reporting System and the Guangzhou Meteorological Bureau. The correlation between meteorological factors and the incidence of other infectious diarrhea was analyzed using negative binomial regression.
		                        		
		                        			Results:
		                        			A total of 104 566 cases of other infectious diarrhea among children under 18 years old were reported in Guangzhou City from 2014 to 2020, with a male to female ratio of 1.48∶1. The incidence rate was the highest in 2017 (980.83 per 100 000) and the lowest in 2020 (388.22 per 100 000). The peak of incidence occurred from October to March of the following year. Children under 5 years old accounted for 87.95% of all cases. The number of cases of other infectious diarrhea was negatively correlated with the temperature of the previous 6 days ( IRR = -0.07 ), and positively correlated with the temperature difference on the day of onset ( IRR =0.02) (both  P <0.05). It was also positively correlated with the wind speed of the previous 7 days ( IRR=0.07, P <0.05), but there was no statistically significant correlation with the relative humidity on the day of onset ( IRR=-0.00, P >0.05).
		                        		
		                        			Conclusions
		                        			Low temperature, large temperature difference, and high wind speed can increase the risk of other infectious diarrhea. It is necessary to strengthen the prediction and early warning in conjunction with meteorological changes, and warn kindergartens and schools to enhance preventive measures against the clustering of other infectious diarrhea cases.
		                        		
		                        		
		                        		
		                        	
3.2024 annual report of interventional treatment for congenital heart disease
Changdong ZHANG ; Yucheng ZHONG ; Geng LI ; Jun TIAN ; Gejun ZHANG ; Nianguo DONG ; Yuan FENG ; Daxin ZHOU ; Yongjian WU ; Lianglong CHEN ; Xiaoke SHANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(07):909-918
		                        		
		                        			
		                        			In recent years, with the continuous development and increasing maturity of interventional techniques, interventional treatment for congenital heart disease (CHD) has been progressively disseminated to county- and city-level hospitals in China. Concurrently, the standardized management of adult CHD (particularly patent foramen ovale) and the lifelong management of complex CHD are gaining increasing clinical attention, while the emergence of new techniques and products continuously advances the discipline. This article aims to review the new progress made in the field of interventional treatment for congenital heart disease in China during 2024. It specifically reviews and analyzes the following key aspects: (1) annual statistics on interventional closure procedures for CHD; (2) recent insights into patent foramen ovale closure; (3) advances in transcatheter pulmonary valve replacement; (4) interventional treatment and lifelong management strategies for complex CHD; (5) new interventional techniques for acquired heart disease; and (6) the application of artificial intelligence in CHD management. Through the synthesis and discussion of these topics, this article seeks to provide a detailed analysis of the current landscape of interventional treatment for CHD in China and project its future development trends.
		                        		
		                        		
		                        		
		                        	
4.Prediction of lymph node metastasis in invasive lung adenocarcinoma based on radiomics of the primary lesion, peritumoral region, and tumor habitat: A single-center retrospective study
Hongchang WANG ; Yan GU ; Wenhao ZHANG ; Guang MU ; Wentao XUE ; Mengen WANG ; Chenghao FU ; Liang CHEN ; Mei YUAN ; Jun WANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(08):1079-1085
		                        		
		                        			
		                        			Objective  To predict the lymph node metastasis status of patients with invasive pulmonary adenocarcinoma by constructing machine learning models based on primary tumor radiomics, peritumoral radiomics, and habitat radiomics, and to evaluate the predictive performance and generalization ability of different imaging features. Methods  A retrospective analysis was performed on the clinical data of 1 263 patients with invasive pulmonary adenocarcinoma who underwent surgery at the Department of Thoracic Surgery, Jiangsu Province Hospital, from 2016 to 2019. Habitat regions were delineated by applying K-means clustering (average cluster number of 2) to the grayscale values of CT images. The peritumoral region was defined as a uniformly expanded area of 3 mm around the primary tumor. The primary tumor region was automatically segmented using V-net combined with manual correction and annotation. Subsequently, radiomics features were extracted based on these regions, and stacked machine learning models were constructed. Model performance was evaluated on the training, testing, and internal validation sets using the area under the receiver operating characteristic curve (AUC), F1 score, recall, and precision. Results  After excluding patients who did not meet the screening criteria, a total of 651 patients were included. The training set consisted of 468 patients (181 males, 287 females) with an average age of (58.39±11.23) years, ranging from 29 to 78 years, the testing set included 140 patients (56 males, 84 females) with an average age of (58.81±10.70) years, ranging from 34 to 82 years, and the internal validation set comprised 43 patients (14 males, 29 females) with an average age of (60.16±10.68) years, ranging from 29 to 78 years. Although the habitat radiomics model did not show the optimal performance in the training set, it exhibited superior performance in the internal validation set, with an AUC of 0.952 [95%CI (0.87, 1.00)], an F1 score of 84.62%, and a precision-recall AUC of 0.892, outperforming the models based on the primary tumor and peritumoral regions. Conclusion The model constructed based on habitat radiomics demonstrated superior performance in the internal validation set, suggesting its potential for better generalization ability and clinical application in predicting lymph node metastasis status in pulmonary adenocarcinoma.
		                        		
		                        		
		                        		
		                        	
5.The Applications and Challenges of Generative Artificial Intelligence in Theoretical and Case Analysis Assessment for Resident Physician Education
Yuankai ZHOU ; Jun SUN ; Shengjun LIU ; Yingying YANG ; Siyi YUAN ; Huaiwu HE ; Yun LONG
Medical Journal of Peking Union Medical College Hospital 2025;16(5):1352-1356
Generative artificial intelligence (GAI) represents a prominent research focus in medicine, with medical education being a key application area. GAI demonstrates potential to enhance residency training efficacy through personalized instruction, automated assessment item generation, question bank updating, and intelligent scoring systems. However, current limitations exist regarding output accuracy and content consistency. To address these constraints, strategic measures are required: continuous GAI model refinement, development of standardized usage guidelines, enhanced data quality control, and implementation of human verification protocols for generated content. Concurrently, residents should proactively acquire GAI utilization skills to strengthen the practical application of theoretical knowledge. With these advancements, GAI is anticipated to evolve into a valuable asset for improving the efficiency and quality of residency training programs.
6.The introduction on the revised standards of pharmaceutical excipients in the Chinese Pharmacopoeia 2025 Edition
CHEN Lei ; LUI Yanming ; YUAN Yaozuo ; CHEN Ying ; DAI Hong ; ZHANG Jun ; MA Shuangcheng
Drug Standards of China 2025;26(1):051-057
		                        		
		                        			
		                        			According to the work goals and tasks determined by edition outline of the Chinese Pharmacopoeia 2025 Edition, the Chinese Pharmacopoeia 2025 has been completed. Among them, 52 new pharmaceutical excipients monographs have been added, and the total number has reached 387. 245 pharmaceutical excipients monographs have been revised, of which 109 monographs have only textual revisions and 136 monographs have substantive revisions. This article focuses on the general framework and the main characteristics of the standards of pharmaceutical excipients in the Chinese Pharmacopoeia 2025, which can contribute to accurately understand and utilize the standards in Chinese Pharmacopoeia.
		                        		
		                        		
		                        		
		                        	
7.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
		                        		
		                        			
		                        			Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects. 
		                        		
		                        		
		                        		
		                        	
8.Study on anti-atherosclerosis mechanism of blood components of Guanxin Qiwei tablets based on HPLC-Q-Exactive-MS/MS and network pharmacology
Yuan-hong LIAO ; Jing-kun LU ; Yan NIU ; Jun LI ; Ren BU ; Peng-peng ZHANG ; Yue KANG ; Yue-wu WANG
Acta Pharmaceutica Sinica 2025;60(2):449-458
		                        		
		                        			
		                        			 The analysis presented here is based on the blood components of Guanxin Qiwei tablets, the key anti-atherosclerosis pathway of Guanxin Qiwei tablets was screened by network pharmacology, and the anti-atherosclerosis mechanism of Guanxin Qiwei tablets was clarified and verified by cell experiments. HPLC-Q-Exactive-MS/MS technique was used to analyze the components of Guanxin Qiwei tablets into blood, to determine the precise mass charge ratio of the compounds, and to conduct a comprehensive analysis of the components by using secondary mass spectrometry fragments and literature comparison. Finally, a total of 42 components of Guanxin Qiwei tablets into blood were identified. To better understand the interactions, we employed the Swiss Target Prediction database to predict the associated targets. Atherosclerosis (AS) disease targets were searched in disease databases Genecard, OMIM and Disgent, and 181 intersection targets of disease targets and component targets were obtained by Venny 2.1.0 software. Protein interactions were analyzed by String database. The 32 core targets were selected by Cytscape software. Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed in DAVID database. It was found that the anti-atherosclerosis pathways of Guanxin Qiwei tablets mainly include lipid metabolism and atherosclerosis and AGE-RAGE signaling pathway in diabetic complications and other signal pathways. The core targets and the core compounds were interlinked, and it was found that cryptotanshinone and tanshinone ⅡA in Guanxin Qiwei tablets were well bound to TNF, PPAR
		                        		
		                        	
		                				9.Chemical consitituents and hypoglycemic activity of Qinhuai No. 1 Rehmannia glutinosa 
		                			
		                			Meng YANG ; Zhi-you HAO ; Xiao-lan WANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Shi-qi ZHOU ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2025;60(1):205-210
		                        		
		                        			
		                        			 Eight compounds were isolated and purified from the ethyl acetate part of 70% acetone extract of 
		                        		
		                        	
10.The technology of fecal microbiota transplantation and its application progress
Shuo YUAN ; Yi-fan ZHANG ; Peng GAO ; Jun LEI ; Ying-yuan LU ; Peng-fei TU ; Yong JIANG
Acta Pharmaceutica Sinica 2025;60(1):82-95
		                        		
		                        			
		                        			 Fecal microbiota transplantation (FMT) technology originated in China during the Eastern Jin Dynasty and has rapidly developed over the past two decades, becoming a primary method for studying the causal relationship between gut microbiota and the occurrence and progression of diseases. At the same time, the therapeutic effects of FMT in the field of gastrointestinal diseases have gained widespread recognition and are gradually expanding into other disease areas. The FMT procedure is relatively complex, and there is currently no standardized method; its success is influenced by various factors, including the donor, recipient, processing of the fecal material, and the method of implantation. Given the increasingly recognized relationship between gut microbiota and various diseases, FMT has become a research hotspot in both scientific studies and clinical applications, achieving a series of significant advancements. To help researchers better understand this technology, this paper will outline the development history of FMT, summarize common operational methods in research and clinical settings, review its application progress, and look forward to future development directions. 
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail