1.Analysis of T7 RNA Polymerase: From Structure-function Relationship to dsRNA Challenge and Biotechnological Applications
Wei-Chen NING ; Yu HUA ; Hui-Ling YOU ; Qiu-Shi LI ; Yao WU ; Yun-Long LIU ; Zhen-Xin HU
Progress in Biochemistry and Biophysics 2025;52(9):2280-2294
		                        		
		                        			
		                        			T7 RNA polymerase (T7 RNAP) is one of the simplest known RNA polymerases. Its unique structural features make it a critical model for studying the mechanisms of RNA synthesis. This review systematically examines the static crystal structure of T7 RNAP, beginning with an in-depth examination of its characteristic “thumb”, “palm”, and “finger” domains, which form the classic “right-hand-like” architecture. By detailing these structural elements, this review establishes a foundation for understanding the overall organization of T7 RNAP. This review systematically maps the functional roles of secondary structural elements and their subdomains in transcriptional catalysis, progressively elucidating the fundamental relationships between structure and function. Further, the intrinsic flexibility of T7 RNAP and its applications in research are also discussed. Additionally, the review presents the structural diagrams of the enzyme at different stages of the transcription process, and through these diagrams, it provides a detailed description of the complete transcription process of T7 RNAP. By integrating structural dynamics and kinetics analyses, the review constructs a comprehensive framework that bridges static structure to dynamic processes. Despite its advantages, T7 RNAP has a notable limitation: it generates double-stranded RNA (dsRNA) as a byproduct. The presence of dsRNA not only compromises the purity of mRNA products but also elicits nonspecific immune responses, which pose significant challenges for biotechnological and therapeutic applications. The review provides a detailed exploration of the mechanisms underlying dsRNA formation during T7 RNAP catalysis, reviews current strategies to mitigate this issue, and highlights recent progress in the field. A key focus is the semi-rational design of T7 RNAP mutants engineered to minimize dsRNA generation and enhance catalytic performance. Beyond its role in transcription, T7 RNAP exhibits rapid development and extensive application in fields, including gene editing, biosensing, and mRNA vaccines. This review systematically examines the structure-function relationships of T7 RNAP, elucidates the mechanisms of dsRNA formation, and discusses engineering strategies to optimize its performance. It further explores the engineering optimization and functional expansion of T7 RNAP. Furthermore, this review also addresses the pressing issues that currently need resolution, discusses the major challenges in the practical application of T7 RNAP, and provides an outlook on potential future research directions. In summary, this review provides a comprehensive analysis of T7 RNAP, ranging from its structural architecture to cutting-edge applications. We systematically examine: (1) the characteristic right-hand domains (thumb, palm, fingers) that define its minimalistic structure; (2) the structure-function relationships underlying transcriptional catalysis; and (3) the dynamic transitions during the complete transcription cycle. While highlighting T7 RNAP’s versatility in gene editing, biosensing, and mRNA vaccine production, we critically address its major limitation—dsRNA byproduct formation—and evaluate engineering solutions including semi-rationally designed mutants. By synthesizing current knowledge and identifying key challenges, this work aims to provide novel insights for the development and application of T7 RNAP and to foster further thought and progress in related fields. 
		                        		
		                        		
		                        		
		                        	
2.Effects of Zuogui Jiangtang Yishen Formula in regulating the NLRP3/caspase-1/GSDMD signaling axis on pyroptosis in rats with diabetic kidney disease
Shujuan Hu ; Xuhua Li ; Yao Peng ; Lili Chen ; Rong Yu ; Yajun Peng
Digital Chinese Medicine 2025;8(3):379-388
		                        		
		                        			Objective:
		                        			To investigate the effects of Zuogui Jiangtang Yishen Formula (左归降糖益肾方, ZGJTYSF) in regulating the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)/caspase-1/gasdermin D (GSDMD) signaling axis on pyroptosis in rats with diabetic kidney disease (DKD).
		                        		
		                        			Methods:
		                        			Fifty male specific pathogen-free (SPF) grade Goto-Kakizaki (GK) rats (12 weeks old) were fed a high-fat diet for one month to establish an early DKD model. Model establishment was confirmed when fasting blood glucose (FBG) ≥ 11.1 mmol/L and urinary albumin-to-creatinine ratio (uACR) ≥ 30 mg/g. The successfully modeled early DKD rats were randomly divided by random number table into five groups (n = 10 per group): model group; dapagliflozin group (1.0 mg/kg, by gavage, served as positive control); and low-, medium-, and high-dose of ZGJTYSF groups (4.9, 9.9, and 19.9 g/kg, respectively, by gavage). Age-matched male SPF Wistar rats (n = 10) served as control group. Rats in control and model groups were gavaged with equivalent volumes of distilled water. Treatment lasted 12 weeks. Changes in uACR, FBG, and renal function were observed in all groups. Hematoxylin-eosin (HE), periodic acid-Schiff (PAS), and Masson staining were used to observe renal histopathological changes. Immunohistochemistry was performed to detect the localization and expression of caspase-1, GSDMD, and NLRP3 in rat renal tissues. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) was utilized to detect pyroptosis in renal tissues. Quantitative real-time polymerase chain reaction (qPCR) and Western blot were applied to detect mRNA and protein expression levels of NLRP3, caspase-1, GSDMD, interleukin (IL)-1β, and IL-18.
		                        		
		                        			Results:
		                        			Compared with model group, all doses of ZGJTYSF showed reductions in FBG, with medium- and high-dose of ZGJTYSF groups demonstrating significant decreases at week 8 and 12 (P < 0.05). For uACR, all doses of ZGJTYSF groups exhibited a decreasing trend, with high-dose of ZGJTYSF group being significantly lower than low- and medium-dose of ZGJTYSF groups at week 12 (P < 0.05) and showing no significant difference from dapagliflozin group (P > 0.05). No significant differences in renal function parameters (serum creatinine, blood urea nitrogen, and uric acid) were observed among groups (P > 0.05). Histopathological examination revealed milder glomerular and tubular lesions in both ZGJTYSF groups and dapagliflozin group, with renal pathological changes in high-dose of ZGJTYSF group resembling those in dapagliflozin group. Immunohistochemistry demonstrated significantly reduced expression of caspase-1, GSDMD, and NLRP3 in renal tissues of dapagliflozin group and high-dose of ZGJTYSF group compared with model group (P < 0.05 or P < 0.01), while the differences in low- and medium-dose of ZGJTYSF groups were not statistically significant (P > 0.05). TUNEL assay showed significantly fewer TUNEL-positive cells in renal tissues of dapagliflozin and high-dose of ZGJTYSF groups (P < 0.01), indicating a marked reduction in pyroptotic cells. Molecular analysis revealed that compared with model group, both dapagliflozin and high-dose of ZGJTYSF groups showed significantly downregulated mRNA and protein expression levels of NLRP3, caspase-1, GSDMD, IL-1β, and IL-18 in renal tissues (P < 0.01), while low- and medium-dose of ZGJTYSF groups showed downward trends without statistical significance (P > 0.05).
		                        		
		                        			Conclusion
		                        			ZGJTYSF may inhibit renal pyroptosis by regulating the NLRP3/caspase-1/GSDMD signaling axis, thereby preventing and treating early renal injury in DKD and delaying the onset and progression of DKD.
		                        		
		                        		
		                        		
		                        	
3.Mechanism of Different Dosage Forms of Kaixinsan in Improving Mitochondrial Function for Prevention and Treatment of Cognitive Disorder Based on AMPK/PGC-1α/SIRT3 Pathway
Shuyue KANG ; Yanzi YU ; Jiaqun SUN ; Wenxuan CHEN ; Yaqin YANG ; Qi WANG ; Weirong LI ; Limei YAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):15-24
		                        		
		                        			
		                        			ObjectiveTo explore the effects of different dosage forms of Kaixinsan (KXS) on the morphology and function of mitochondria in rat models of Alzheimer's disease (AD) and potential mechanisms of action. MethodsMale SD rats were randomly assigned to a sham group, model group, treatment groups receiving KXS decoction, powders, and granules (3.08 g·kg-1), as well as donepezil group (0.51×10-3 g·kg-1), with 10 rats in each group. AD model was created using intracerebroventricular injection of streptozocin (STZ). After 30 days of administration, behavioral assessments were conducted, and mitochondrial morphology was observed using transmission electron microscopy. Mitochondrial respiratory chain complex content was measured via enzyme-linked immunosorbent assay (ELISA). Changes in mitochondrial membrane potential were measured via JC-1 staining, and superoxide dismutase (SOD) activity and reactive oxygen species (ROS) levels were measured via biochemical assays. The mRNA expression of adenosine 5'-monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and silent information regulator 3 (SIRT3) was detected by real-time fluorescent quantitative polymerase chain reaction (Real-time PCR), and Western blot was used to examine the protein expression levels of optic atrophy protein1 (OPA1), mitochondrial fission protein 1 (FIS1), AMPK, p-AMPK, PGC-1α, and SIRT3. ResultsCompared with the sham group, rats in the model group had significantly lower recognition index, spontaneous alternation rate, escape latency, number of platform crossings, time spent in the target quadrant, and percentage of distance traveled in the target quadrant distance (P<0.05, P<0.01). Significant mitochondrial damage was observed in the hippocampal tissue, with a marked decrease in mitochondrial respiratory chain complex content (P<0.01) and reduced mitochondrial membrane potential (P<0.05). Additionally, the SOD activity was reduced, while ROS levels were elevated (P<0.01). The mRNA expression of PGC-1α and SIRT3 was significantly downregulated (P<0.01), along with decreased protein expression levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, whereas FIS1 protein expression was significantly upregulated (P<0.05, P<0.01). Compared with the model group, rats in KXS-treated groups (various dosage forms) showed significant improvement in behavioral indexes (P<0.05, P<0.01), reduced hippocampal mitochondrial damage, and more organized mitochondrial cristae. Mitochondrial respiratory chain complex content was significantly increased (P<0.05, P<0.01), and mitochondrial membrane potentials were elevated (P<0.05). SOD activity was elevated, and ROS levels were significantly reduced (P<0.05, P<0.01). Furthermore, the mRNA expression of PGC-1α and SIRT3 was upregulated, with increased protein levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, while FIS1 protein expression levels were significantly reduced (P<0.05, P<0.01). Across the KXS-treated groups, the granule group showed a higher spontaneous alternation rate than the decoction and powder groups (P<0.05). ConclusionKXS decoction, powders, and granules can improve the learning and memory ability of rats, with granules being the most effective. The mechanism of action may involve activation of the AMPK/PGC-1α/SIRT3 signaling pathway, improvement of the mitochondrial function, and subsequent amelioration of the brain energy metabolism disorders. 
		                        		
		                        		
		                        		
		                        	
4.Mechanism of Different Dosage Forms of Kaixinsan in Improving Mitochondrial Function for Prevention and Treatment of Cognitive Disorder Based on AMPK/PGC-1α/SIRT3 Pathway
Shuyue KANG ; Yanzi YU ; Jiaqun SUN ; Wenxuan CHEN ; Yaqin YANG ; Qi WANG ; Weirong LI ; Limei YAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):15-24
		                        		
		                        			
		                        			ObjectiveTo explore the effects of different dosage forms of Kaixinsan (KXS) on the morphology and function of mitochondria in rat models of Alzheimer's disease (AD) and potential mechanisms of action. MethodsMale SD rats were randomly assigned to a sham group, model group, treatment groups receiving KXS decoction, powders, and granules (3.08 g·kg-1), as well as donepezil group (0.51×10-3 g·kg-1), with 10 rats in each group. AD model was created using intracerebroventricular injection of streptozocin (STZ). After 30 days of administration, behavioral assessments were conducted, and mitochondrial morphology was observed using transmission electron microscopy. Mitochondrial respiratory chain complex content was measured via enzyme-linked immunosorbent assay (ELISA). Changes in mitochondrial membrane potential were measured via JC-1 staining, and superoxide dismutase (SOD) activity and reactive oxygen species (ROS) levels were measured via biochemical assays. The mRNA expression of adenosine 5'-monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), and silent information regulator 3 (SIRT3) was detected by real-time fluorescent quantitative polymerase chain reaction (Real-time PCR), and Western blot was used to examine the protein expression levels of optic atrophy protein1 (OPA1), mitochondrial fission protein 1 (FIS1), AMPK, p-AMPK, PGC-1α, and SIRT3. ResultsCompared with the sham group, rats in the model group had significantly lower recognition index, spontaneous alternation rate, escape latency, number of platform crossings, time spent in the target quadrant, and percentage of distance traveled in the target quadrant distance (P<0.05, P<0.01). Significant mitochondrial damage was observed in the hippocampal tissue, with a marked decrease in mitochondrial respiratory chain complex content (P<0.01) and reduced mitochondrial membrane potential (P<0.05). Additionally, the SOD activity was reduced, while ROS levels were elevated (P<0.01). The mRNA expression of PGC-1α and SIRT3 was significantly downregulated (P<0.01), along with decreased protein expression levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, whereas FIS1 protein expression was significantly upregulated (P<0.05, P<0.01). Compared with the model group, rats in KXS-treated groups (various dosage forms) showed significant improvement in behavioral indexes (P<0.05, P<0.01), reduced hippocampal mitochondrial damage, and more organized mitochondrial cristae. Mitochondrial respiratory chain complex content was significantly increased (P<0.05, P<0.01), and mitochondrial membrane potentials were elevated (P<0.05). SOD activity was elevated, and ROS levels were significantly reduced (P<0.05, P<0.01). Furthermore, the mRNA expression of PGC-1α and SIRT3 was upregulated, with increased protein levels of OPA1, p-AMPK/AMPK, PGC-1α, and SIRT3, while FIS1 protein expression levels were significantly reduced (P<0.05, P<0.01). Across the KXS-treated groups, the granule group showed a higher spontaneous alternation rate than the decoction and powder groups (P<0.05). ConclusionKXS decoction, powders, and granules can improve the learning and memory ability of rats, with granules being the most effective. The mechanism of action may involve activation of the AMPK/PGC-1α/SIRT3 signaling pathway, improvement of the mitochondrial function, and subsequent amelioration of the brain energy metabolism disorders. 
		                        		
		                        		
		                        		
		                        	
5.Research progress of nano drug delivery system based on metal-polyphenol network for the diagnosis and treatment of inflammatory diseases
Meng-jie ZHAO ; Xia-li ZHU ; Yi-jing LI ; Zi-ang WANG ; Yun-long ZHAO ; Gao-jian WEI ; Yu CHEN ; Sheng-nan HUANG
Acta Pharmaceutica Sinica 2025;60(2):323-336
		                        		
		                        			
		                        			 Inflammatory diseases (IDs) are a general term of diseases characterized by chronic inflammation as the primary pathogenetic mechanism, which seriously affect the quality of patient′s life and cause significant social and medical burden. Current drugs for IDs include nonsteroidal anti-inflammatory drugs, corticosteroids, immunomodulators, biologics, and antioxidants, but these drugs may cause gastrointestinal side effects, induce or worsen infections, and cause non-response or intolerance. Given the outstanding performance of metal polyphenol network (MPN) in the fields of drug delivery, biomedical imaging, and catalytic therapy, its application in the diagnosis and treatment of IDs has attracted much attention and significant progress has been made. In this paper, we first provide an overview of the types of IDs and their generating mechanisms, then sort out and summarize the different forms of MPN in recent years, and finally discuss in detail the characteristics of MPN and their latest research progress in the diagnosis and treatment of IDs. This research may provide useful references for scientific research and clinical practice in the related fields. 
		                        		
		                        		
		                        		
		                        	
6.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
		                        		
		                        			 Purpose:
		                        			Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles. 
		                        		
		                        			Materials and Methods:
		                        			Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion. 
		                        		
		                        			Results:
		                        			The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column. 
		                        		
		                        			Conclusions
		                        			Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy. 
		                        		
		                        		
		                        		
		                        	
7.Does 10-Year Atherosclerotic Cardiovascular Disease Risk Predict Incident Diabetic Nephropathy and Retinopathy in Patients with Type 2 Diabetes Mellitus? Results from Two Prospective Cohort Studies in Southern China
Jiaheng CHEN ; Yu Ting LI ; Zimin NIU ; Zhanpeng HE ; Yao Jie XIE ; Jose HERNANDEZ ; Wenyong HUANG ; Harry H.X. WANG ;
Diabetes & Metabolism Journal 2025;49(2):298-310
		                        		
		                        			 Background:
		                        			Diabetic macrovascular and microvascular complications often coexist and may share similar risk factors and pathological pathways. We aimed to investigate whether 10-year atherosclerotic cardiovascular disease (ASCVD) risk, which is commonly assessed in diabetes management, can predict incident diabetic nephropathy (DN) and retinopathy (DR) in patients with type 2 diabetes mellitus (T2DM). 
		                        		
		                        			Methods:
		                        			This prospective cohort study enrolled 2,891 patients with clinically diagnosed T2DM who were free of ASCVD, nephropathy, or retinopathy at baseline in the Guangzhou (2017–2022) and Shaoguan (2019–2021) Diabetic Eye Study in southern China. The 10-year ASCVD risk was calculated by the Prediction for ASCVD Risk in China (China-PAR) equations. Multivariable- adjusted Cox proportional hazard models were developed to estimate hazard ratios (HRs) with 95% confidence intervals (CIs). The area under the receiver operating characteristic curve (AUC) was used to evaluate predictive capability. 
		                        		
		                        			Results:
		                        			During follow-up, a total of 171 cases of DN and 532 cases of DR were documented. Each 1% increment in 10-year ASCVD risk was associated with increased risk of DN (pooled HR, 1.122; 95% CI, 1.094 to 1.150) but not DR (pooled HR, 0.996; 95% CI, 0.979 to 1.013). The model demonstrated acceptable performance in predicting new-onset DN (pooled AUC, 0.670; 95% CI, 0.628 to 0.715). These results were consistent across cohorts and subgroups, with the association appearing to be more pronounced in women. 
		                        		
		                        			Conclusion
		                        			Ten-year ASCVD risk predicts incident DN but not DR in our study population with T2DM. Regular monitoring of ASCVD risk in routine diabetes practice may add to the ability to enhance population-based prevention for both macrovascular and microvascular diseases, particularly among women. 
		                        		
		                        		
		                        		
		                        	
8.Antiviral therapy for chronic hepatitis B with mildly elevated aminotransferase: A rollover study from the TORCH-B trial
Yao-Chun HSU ; Chi-Yi CHEN ; Cheng-Hao TSENG ; Chieh-Chang CHEN ; Teng-Yu LEE ; Ming-Jong BAIR ; Jyh-Jou CHEN ; Yen-Tsung HUANG ; I-Wei CHANG ; Chi-Yang CHANG ; Chun-Ying WU ; Ming-Shiang WU ; Lein-Ray MO ; Jaw-Town LIN
Clinical and Molecular Hepatology 2025;31(1):213-226
		                        		
		                        			 Background/Aims:
		                        			Treatment indications for patients with chronic hepatitis B (CHB) remain contentious, particularly for patients with mild alanine aminotransferase (ALT) elevation. We aimed to evaluate treatment effects in this patient population. 
		                        		
		                        			Methods:
		                        			This rollover study extended a placebo-controlled trial that enrolled non-cirrhotic patients with CHB and ALT levels below two times the upper limit of normal. Following 3 years of randomized intervention with either tenofovir disoproxil fumarate (TDF) or placebo, participants were rolled over to open-label TDF for 3 years. Liver biopsies were performed before and after the treatment to evaluate histopathological changes. Virological, biochemical, and serological outcomes were also assessed (NCT02463019). 
		                        		
		                        			Results:
		                        			Of 146 enrolled patients (median age 47 years, 80.8% male), 123 completed the study with paired biopsies. Overall, the Ishak fibrosis score decreased in 74 (60.2%), remained unchanged in 32 (26.0%), and increased in 17 (13.8%) patients (p<0.0001). The Knodell necroinflammation score decreased in 58 (47.2%), remained unchanged in 29 (23.6%), and increased in 36 (29.3%) patients (p=0.0038). The proportion of patients with an Ishak score ≥ 3 significantly decreased from 26.8% (n=33) to 9.8% (n=12) (p=0.0002). Histological improvements were more pronounced in patients switching from placebo. Virological and biochemical outcomes also improved in placebo switchers and remained stable in patients who continued TDF. However, serum HBsAg levels did not change and no patient cleared HBsAg. 
		                        		
		                        			Conclusions
		                        			In CHB patients with minimally raised ALT, favorable histopathological, biochemical, and virological outcomes were observed following 3-year TDF treatment, for both treatment-naïve patients and those already on therapy. 
		                        		
		                        		
		                        		
		                        	
9.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
		                        		
		                        			 Purpose:
		                        			Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles. 
		                        		
		                        			Materials and Methods:
		                        			Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion. 
		                        		
		                        			Results:
		                        			The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column. 
		                        		
		                        			Conclusions
		                        			Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy. 
		                        		
		                        		
		                        		
		                        	
10.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
		                        		
		                        			 Purpose:
		                        			Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles. 
		                        		
		                        			Materials and Methods:
		                        			Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion. 
		                        		
		                        			Results:
		                        			The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column. 
		                        		
		                        			Conclusions
		                        			Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail