1. Resveratrol inhibits autophagy and promotes apoptosis in uveal melanoma cells via miR-512-3P/DUSPl axis
Zheng-Yang SUN ; Nan-Nan LIU ; Xue-Fei FAN ; Su-Huan CHEN ; Xiao-Yu CHEN ; Zheng-Yang SUN ; Wu-Qi CHEN ; Guang-Yi CHEN ; Yu-Bao SHAO ; Xiao-Yu CHEN
Chinese Pharmacological Bulletin 2024;40(2):292-298
Aim To investigate the regulatory role and mechanism of resveratrol in inhibiting autophagy and promoting apoptosis in choroidal melanoma cells. Methods Choroidal melanoma cells (MUM2B) were divided into control and experimental groups, and treated with different concentrations of resveratrol (0, 10, 20,40,60,80 μmol ·L
2.Research progress of IDO1-mediated tryptophan metabolism in sepsis
Xiao-di ZHAO ; Cheng-yan MA ; Hua-qing CUI ; Yu-chen WANG ; Xiao-guang CHEN ; Sen ZHANG
Acta Pharmaceutica Sinica 2024;59(2):289-297
Sepsis is a condition characterized by organ dysfunction resulting from the systemic inflammatory response triggered by an infection. Excessive inflammation and immunosuppression are intertwined, and severe cases may even develop into multiple organ failure. Studies have shown that indoleamine 2,3-dioxygenase 1-mediated tryptophan metabolism is involved in the occurrence and development of sepsis, and elevated plasma kynurenine levels and Kyn/Trp ratios are early indicators of sepsis development. In this paper, we provide a comprehensive summary of the role of IDO1 in the acute inflammatory phase of sepsis, late immunosuppression, and organ damage. This includes its regulation of inflammatory state, immune cell function, blood pressure, and other aspects. Additionally, we analyze preclinical studies on targeted IDO1 drugs. An in-depth understanding and study of IDO may help to understand the pathogenesis and clinical significance of sepsis and multiple organ damage from a new perspective and provide new research ideas for exploring its prevention and treatment methods.
3.Effect of Compatibility of Wujiwan on Pharmacokinetics and Tissue Distribution of Representative Components
Yu DONG ; Ying CHEN ; Zipeng GONG ; Qing YANG ; Xiaogang WENG ; Yajie WANG ; Xiaoxin ZHU ; Chenhao ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(3):105-113
ObjectiveTo study the plasma pharmacokinetics and tissue distribution of five representative components in Wujiwan, and to illustrate the difference of metabolism and tissue distribution before and after compatibility. MethodHealthy male SD rats were divided into four groups, including Wujiwan group(A group, 62.96 g·L-1), Coptidis Rhizoma group(B group, 38.4 g·L-1), processed Euodiae Fructus group(C group, 5.88 g·L-1) and fried Paeoniae Radix Alba group(D group, 18.68 g·L-1), with 65 rats in each group, and were administered the drugs according to the clinical dose of decoction pieces converted into the dose of the extracts. Then plasma, liver, small intestine and brain were taken at pharmacokinetic set time in each group after administration. Ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry was developed for the quantitative analysis of five representative components[berberine(Ber), palmatine(Pal), evodiamine(Evo), rutecarpine(Rut) and paeoniflorin(Pae)] in Wujiwan, their concentrations in plasma, liver, small intestine and brain were detected at different time, plasma samples were processed by protein precipitation, and tissue samples were pretreated by protein precipitation plus liquid-liquid extraction. Non-atrioventricular model was used to calculate the pharmacokinetic parameters of each component, and the parameters of each group were compared. ResultPharmacokinetic results of A group showed that area under the curve(AUC0-t) of the five representative components were ranked as follows:Ber and Pal were small intestine>liver>blood, Evo and Rut were liver>small intestine>plasma, Pae was small intestine>plasma, which was not detected in the liver, no other components were detected in brain except for Ber. In comparison with plasma and other tissues, peak concentration(Cmax) of Ber, Pal, Evo, and Rut were the highest and time to peak(tmax) were the lowest in the liver of A group. In plasma, the AUC0-t and Cmax of Evo and Rut were increased in A group compared with C group, tmax of Pea was elevated and its Cmax was decreased in A group compared with D group. In the liver, compared with B-D groups, Cmax values of 5 representative components except Pae were elevated, AUC0-t of Pae was decreased and AUC0-t of Evo and Rut were increased in the A group. In the small intestine, half-life(t1/2) of each representative components in A group was elevated and tmax was decreased, and Cmax of each representative ingredient except Pal was decreased, AUC0-t values of Ber and Pal were increased, whereas the AUC0-t values of Evo and Rut were decreased. ConclusionThe small intestine, as the effector organ, is the most distributed, followed by the liver. The pharmacokinetic parameters of the representative components in Wujiwan are changed before and after compatibility, which is more favorable to the exertion of its pharmacodynamic effects.
4.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.
5.The Role of Prefrontal Cortex in Social Behavior
Gan-Jiang WEI ; Ling WANG ; Jing-Nan ZHU ; Xiao WANG ; Yu-Ran ZANG ; Chen-Guang ZHENG ; Jia-Jia YANG ; Dong MING
Progress in Biochemistry and Biophysics 2024;51(1):82-93
Social behavior is extremely important for the physical and mental health of individuals, their growth and development, and for social development. Social behavioral disorders have become a typical clinical representation of a variety of psychiatric disorders and have serious adverse effects on the development of individuals. The prefrontal cortex, as one of the key areas responsible for social behavior, involves in many advanced brain functions such as social behavior, emotion, and decision-making. The neural activity of prefrontal cortex has a major impact on the performance of social behavior. Numerous studies demonstrate that neurons and glial cells can regulate certain social behaviors by themselves or the interaction which we called neural microcircuits; and the collaboration with other brain regions also regulates different types of social behaviors. The prefrontal cortex (PFC)-thalamus projections mainly influence social dominance and social preference; the PFC-amygdala projections play a key role in fear behavior, emotional behavior, social exploration, and social identification; and the PFC-nucleus accumbens projections mainly involve social preference, social memory, social cognition, and spatial-social associative learning. Based on the above neural mechanism, many studies have focused on applying the non-invasive neurostimulation to social deficit-related symptoms, including transcranial magnetic stimulation (TMS), transcranial electrical stimulation (TES) and focused ultrasound stimulation (FUS). Our previous study also investigated that repetitive transcranial magnetic stimulation can improve the social behavior of mice and low-intensity focused ultrasound ameliorated the social avoidance behavior of mice by enhancing neuronal activity in the prefrontal cortex. In this review, we summarize the relationship between neurons, glial cells, brain projection and social behavior in the prefrontal cortex, and systematically show the role of the prefrontal cortex in the regulation of social behavior. We hope our summarization will provide a reference for the neural mechanism and effective treatment of social disorders.
6.Efficacy and safety of recombinant human anti-SARS-CoV-2 monoclonal antibody injection(F61 injection)in the treatment of patients with COVID-19 combined with renal damage:a randomized controlled exploratory clinical study
Ding-Hua CHEN ; Chao-Fan LI ; Yue NIU ; Li ZHANG ; Yong WANG ; Zhe FENG ; Han-Yu ZHU ; Jian-Hui ZHOU ; Zhe-Yi DONG ; Shu-Wei DUAN ; Hong WANG ; Meng-Jie HUANG ; Yuan-Da WANG ; Shuo-Yuan CONG ; Sai PAN ; Jing ZHOU ; Xue-Feng SUN ; Guang-Yan CAI ; Ping LI ; Xiang-Mei CHEN
Chinese Journal of Infection Control 2024;23(3):257-264
Objective To explore the efficacy and safety of recombinant human anti-severe acute respiratory syn-drome coronavirus 2(anti-SARS-CoV-2)monoclonal antibody injection(F61 injection)in the treatment of patients with coronavirus disease 2019(COVID-19)combined with renal damage.Methods Patients with COVID-19 and renal damage who visited the PLA General Hospital from January to February 2023 were selected.Subjects were randomly divided into two groups.Control group was treated with conventional anti-COVID-19 therapy,while trial group was treated with conventional anti-COVID-19 therapy combined with F61 injection.A 15-day follow-up was conducted after drug administration.Clinical symptoms,laboratory tests,electrocardiogram,and chest CT of pa-tients were performed to analyze the efficacy and safety of F61 injection.Results Twelve subjects(7 in trial group and 5 in control group)were included in study.Neither group had any clinical progression or death cases.The ave-rage time for negative conversion of nucleic acid of SARS-CoV-2 in control group and trial group were 3.2 days and 1.57 days(P=0.046),respectively.The scores of COVID-19 related target symptom in the trial group on the 3rd and 5th day after medication were both lower than those of the control group(both P<0.05).According to the clinical staging and World Health Organization 10-point graded disease progression scale,both groups of subjects improved but didn't show statistical differences(P>0.05).For safety,trial group didn't present any infusion-re-lated adverse event.Subjects in both groups demonstrated varying degrees of elevated blood glucose,elevated urine glucose,elevated urobilinogen,positive urine casts,and cardiac arrhythmia,but the differences were not statistica-lly significant(all P>0.05).Conclusion F61 injection has initially demonstrated safety and clinical benefit in trea-ting patients with COVID-19 combined with renal damage.As the domestically produced drug,it has good clinical accessibility and may provide more options for clinical practice.
7.Research status of mechanism of psilocybin in the treatment of treatment-resistant depression
Guang-Shun HUA ; Chen-Yang GUO ; Hang ZHANG ; Yu-Ting GUO ; Si-Miao GONG ; Yan YANG
The Chinese Journal of Clinical Pharmacology 2024;40(16):2428-2432
Refractory depression is a drug-resistant subtype of major depressive disorder for which there is a lack of effective and durable treatments.Seroxibine,the active substance in the mushroom Capsicum annuum,is a natural 5-hydroxytryptamine hallucinogen that activates the 5-hydroxytryptamine 2A receptor to mediate multiple aspects of antidepressant effects.In recent years,it has received renewed attention for its outstanding therapeutic effects in the treatment of refractory depression or other psychiatric disorders.Therefore,this paper summarizes the studies on neuroplasticity,brain neural connectivity network,neurotransmitters,immune factors,microbiota-gut-brain axis,and clinical efficacy of seloxipine in domestic and international literature,and explores the possible mechanisms of seloxipine's effect on refractory depression,with a view to providing theoretical basis for the clinical application of this drug.
8.Full-field Anterior Chamber Angle Measurement Based on Optical Reflection Tomography
Bi-Wang LIU ; Jun-Ping ZHONG ; Hai-Na LIN ; Ya-Guang ZENG ; You-Ping YU ; Hong-Yi LI ; Ding-An HAN ; Jin-Ying CHEN
Progress in Biochemistry and Biophysics 2024;51(9):2240-2248
ObjectiveAngle-closure glaucoma (ACG) is one of the major eye-blinding diseases. To diagnose ACG, it is crucial to examine the anterior chamber angle. Current diagnostic tools include slit lamp gonioscopy, water gonioscopy, ultrasound biomicroscopy (UBM), and anterior segment optical coherence tomography (AS-OCT). Slit lamp and water gonioscopy allow convenient observation of the anterior chamber angle, but pose risks of invasive operation and eye infections. UBM can accurately measure the structure of the anterior chamber angle. However, it is complex to operate and unsuitable for patients, who have undergone trauma or ocular surgery. Although AS-OCT provides detailed images, it is costly. The aim of this study is to explore a non-invasive, non-destructive optical reflection tomography (ORT) technique. This technique can achieve low-cost three-dimensional imaging and full-field anterior chamber angle measurement of the porcine eye. MethodsThe experiment involved assembling an optical reflection tomography system, which included a complementary metal oxide semiconductor (CMOS) camera, a telecentric system, a stepper motor, and a white light source, achieving a spatial resolution of approximately 8.5 μm. The process required positioning the porcine eye at the center of the field of the imaging system and rotating it around its central axis using a stepper motor. Reflection projection images were captured at each angle with an exposure time of 1.0 ms and an interval of 2°. The collected reflection-projection data were processed using a filtered reflection tomography algorithm, generating a series of two-dimensional slice data. These slices essentially represented cross-sectional views of the three-dimensional structural image, and were reconstructed into a complete three-dimensional structural image. Based on the reconstructed three-dimensional structural image of the porcine eye, the anterior chamber angles at different positions were measured, and a distribution map of these angles was drawn. Simultaneously, the ORT measurements were compared with the standard results obtained from optical coherence tomography (OCT) to assess the accuracy of ORT measurements. ResultsIn this study, we successfully obtained the reflection projection data of a porcine eye using ORT technology, reconstructed its three-dimensional structural image, and measured the anterior chamber angle, generating the corresponding distribution map. To better distinguish the different structural parts of porcine eye, the three-dimensional structural image was marked with blue, green, and yellow dashed lines from the outer to the inner layers. The area between the blue and green dashed lines corresponded to the sclera. The area between the green and yellow dashed lines corresponded to the iris. The area inside the yellow dashed line corresponded to the pupil. The three-dimensional structural image clearly revealed the key anatomical features of the porcine eye. It was able to measure the anterior chamber angle at different positions. Additionally, the anterior chamber angle measurements of the porcine eye using ORT were compared with the measurements obtained using a TEL320C1 type OCT system, showing an average deviation of 0.51° and a mean square error
9.Biomarkers Screening and Mechanisms Analysis of the Restraint Stress-Induced Myocardial Injury in Hyperlipidemia ApoE-/-Mice
Shang-Heng CHEN ; Sheng-Zhong DONG ; Zhi-Min WANG ; Guang-Hui HONG ; Xing YE ; Zi-Jie LIN ; Jun-Yi LIN ; Jie-Qing JIANG ; Shou-Yu WANG ; Han-Cheng LIN ; Yi-Wen SHEN
Journal of Forensic Medicine 2024;40(2):172-178
Objective To explore the biomarkers and potential mechanisms of chronic restraint stress-induced myocardial injury in hyperlipidemia ApoE-/-mice.Methods The hyperlipidemia combined with the chronic stress model was established by restraining the ApoE-/-mice.Proteomics and bioinformatics techniques were used to describe the characteristic molecular changes and related regulatory mechanisms of chronic stress-induced myocardial injury in hyperlipidemia mice and to explore potential diagnostic biomarkers.Results Proteomic analysis showed that there were 43 significantly up-regulated and 58 sig-nificantly down-regulated differentially expressed proteins in hyperlipidemia combined with the restraint stress group compared with the hyperlipidemia group.Among them,GBP2,TAOK3,TFR1 and UCP1 were biomarkers with great diagnostic potential.KEGG pathway enrichment analysis indicated that fer-roptosis was a significant pathway that accelerated the myocardial injury in hyperlipidemia combined with restraint stress-induced model.The mmu_circ_0001567/miR-7a/Tfr-1 and mmu_circ_0001042/miR-7a/Tfr-1 might be important circRNA-miRNA-mRNA regulatory networks related to ferroptosis in this model.Conclusion Chronic restraint stress may aggravate myocardial injury in hyperlipidemia mice via ferrop-tosis.Four potential biomarkers are selected for myocardial injury diagnosis,providing a new direction for sudden cardiac death(SCD)caused by hyperlipidemia combined with the restraint stress.
10.Current status and prospects of exoskeletons applied in medical service support
Yao-Rui YU ; Xue-Jun HU ; Kun-Peng WU ; Jing-Guang PAN ; Huo-Liang CHEN ; Jie REN ; Wei JIANG
Chinese Medical Equipment Journal 2024;45(3):71-75
The current status of exoskeletons was introduced in enhancing individual soldier's battlefield rescue capabilities,promoting the integrated use of battlefield rescue equipment,protecting medical personnel on the battlefield and assisting injured soldiers in rehabilitation training.The challenges of exoskeletons faced in human-machine interaction,power supply endurance,heavy overall structure,restricted movement and high cost were analyzed when applied to medical service support,and some suggestions were proposed accordingly including enhancing technology research and development,integrated application,communication and cooperation and personnel training.References were provided for the application of exoskeletons in China's medical service support.[Chinese Medical Equipment Journal,2024,45(3):71-75]

Result Analysis
Print
Save
E-mail