1.Research and Application of Scalp Surface Laplacian Technique
Rui-Xin LUO ; Si-Ying GUO ; Xin-Yi LI ; Yu-He ZHAO ; Chun-Hou ZHENG ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(2):425-438
Electroencephalogram (EEG) is a non-invasive, high temporal-resolution technique for monitoring brain activity. However, affected by the volume conduction effect, EEG has a low spatial resolution and is difficult to locate brain neuronal activity precisely. The surface Laplacian (SL) technique obtains the Laplacian EEG (LEEG) by estimating the second-order spatial derivative of the scalp potential. LEEG can reflect the radial current activity under the scalp, with positive values indicating current flow from the brain to the scalp (“source”) and negative values indicating current flow from the scalp to the brain (“sink”). It attenuates signals from volume conduction, effectively improving the spatial resolution of EEG, and is expected to contribute to breakthroughs in neural engineering. This paper provides a systematic overview of the principles and development of SL technology. Currently, there are two implementation paths for SL technology: current source density algorithms (CSD) and concentric ring electrodes (CRE). CSD performs the Laplace transform of the EEG signals acquired by conventional disc electrodes to indirectly estimate the LEEG. It can be mainly classified into local methods, global methods, and realistic Laplacian methods. The global method is the most commonly used approach in CSD, which can achieve more accurate estimation compared with the local method, and it does not require additional imaging equipment compared with the realistic Laplacian method. CRE employs new concentric ring electrodes instead of the traditional disc electrodes, and measures the LEEG directly by differential acquisition of the multi-ring signals. Depending on the structure, it can be divided into bipolar CRE, quasi-bipolar CRE, tripolar CRE, and multi-pole CRE. The tripolar CRE is widely used due to its optimal detection performance. While ensuring the quality of signal acquisition, the complexity of its preamplifier is relatively acceptable. Here, this paper introduces the study of the SL technique in resting rhythms, visual-related potentials, movement-related potentials, and sensorimotor rhythms. These studies demonstrate that SL technology can improve signal quality and enhance signal characteristics, confirming its potential applications in neuroscientific research, disease diagnosis, visual pathway detection, and brain-computer interfaces. CSD is frequently utilized in applications such as neuroscientific research and disease detection, where high-precision estimation of LEEG is required. And CRE tends to be used in brain-computer interfaces, that have stringent requirements for real-time data processing. Finally, this paper summarizes the strengths and weaknesses of SL technology and envisages its future development. SL technology boasts advantages such as reference independence, high spatial resolution, high temporal resolution, enhanced source connectivity analysis, and noise suppression. However, it also has shortcomings that can be further improved. Theoretically, simulation experiments should be conducted to investigate the theoretical characteristics of SL technology. For CSD methods, the algorithm needs to be optimized to improve the precision of LEEG estimation, reduce dependence on the number of channels, and decrease computational complexity and time consumption. For CRE methods, the electrodes need to be designed with appropriate structures and sizes, and the low-noise, high common-mode rejection ratio preamplifier should be developed. We hope that this paper can promote the in-depth research and wide application of SL technology.
2.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
3.Clinical Efficacy of Xiaoji Hufei Formula in Protecting Children with Close Contact Exposure to Influenza: A Multicenter,Prospective, Non-randomized, Parallel, Controlled Trial
Jing WANG ; Jianping LIU ; Tiegang LIU ; Hong WANG ; Yingxin FU ; Jing LI ; Huaqing TAN ; Yingqi XU ; Yanan MA ; Wei WANG ; Jia WANG ; Haipeng CHEN ; Yuanshuo TIAN ; Yang WANG ; Chen BAI ; Zhendong WANG ; Qianqian LI ; He YU ; Xueyan MA ; Fei DONG ; Liqun WU ; Xiaohong GU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):223-230
ObjectiveTo evaluate the efficacy and safety of Xiaoji Hufei Formula in protecting children with close contact exposure to influenza, and to provide reference and evidence-based support for better clinical prevention and treatment of influenza in children. MethodsA multicenter, prospective, non-randomized, parallel, controlled trial was conducted from October 2021 to May 2022 in five hospitals, including Dongfang Hospital of Beijing University of Chinese Medicine. Confirmed influenza cases and influenza-like illness (ILI) cases were collected, and eligible children with close contact exposure to these cases were recruited in the outpatient clinics. According to whether the enrolled close contacts were willing to take Xiaoji Hufei formula for influenza prevention, they were assigned to the observation group (108 cases) or the control group (108 cases). Follow-up visits were conducted on days 7 and 14 after enrollment. The primary outcomes were the incidence of ILI and the rate of laboratory-confirmed influenza. Secondary outcomes included traditional Chinese medicine (TCM) symptom score scale for influenza, influenza-related emergency (outpatient) visit rate, influenza hospitalization rate, and time to onset after exposure to influenza cases. ResultsA total of 216 participants were enrolled, with 108 in the observation group and 108 in the control group. Primary outcomes: (1) Incidence of ILI: The incidence was 12.0% (13/108) in the observation group and 23.1% (25/108) in the control group, with the observation group showing a significantly lower incidence (χ2=4.6, P<0.05). (2) Influenza confirmation rate: 3.7% (4/108) in the observation group and 4.6% (5/108) in the control group, with no statistically significant difference. Secondary outcomes: (1) TCM symptom score scale: after onset, nasal congestion and runny nose scores differed significantly between the two groups (P<0.05), while other symptoms such as fever, sore throat, and cough showed no significant differences. (2) Influenza-related emergency (outpatient) visit rate: 84.6% (11 cases) in the observation group and 96.0% (24 cases) in the control group, with no significant difference. (3) Time to onset after exposure: The median onset time after exposure to index patients was 7 days in the observation group and 4 days in the control group, with a statistically significant difference (P<0.05). ConclusionIn previously healthy children exposed to infectious influenza cases under unprotected conditions, Xiaoji Hufei formula prophylaxis significantly reduced the incidence of ILI. Xiaoji Hufei Formula can be recommended as a specific preventive prescription for influenza in children.
4.Clinical Efficacy of Xiaoji Hufei Formula in Protecting Children with Close Contact Exposure to Influenza: A Multicenter,Prospective, Non-randomized, Parallel, Controlled Trial
Jing WANG ; Jianping LIU ; Tiegang LIU ; Hong WANG ; Yingxin FU ; Jing LI ; Huaqing TAN ; Yingqi XU ; Yanan MA ; Wei WANG ; Jia WANG ; Haipeng CHEN ; Yuanshuo TIAN ; Yang WANG ; Chen BAI ; Zhendong WANG ; Qianqian LI ; He YU ; Xueyan MA ; Fei DONG ; Liqun WU ; Xiaohong GU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):223-230
ObjectiveTo evaluate the efficacy and safety of Xiaoji Hufei Formula in protecting children with close contact exposure to influenza, and to provide reference and evidence-based support for better clinical prevention and treatment of influenza in children. MethodsA multicenter, prospective, non-randomized, parallel, controlled trial was conducted from October 2021 to May 2022 in five hospitals, including Dongfang Hospital of Beijing University of Chinese Medicine. Confirmed influenza cases and influenza-like illness (ILI) cases were collected, and eligible children with close contact exposure to these cases were recruited in the outpatient clinics. According to whether the enrolled close contacts were willing to take Xiaoji Hufei formula for influenza prevention, they were assigned to the observation group (108 cases) or the control group (108 cases). Follow-up visits were conducted on days 7 and 14 after enrollment. The primary outcomes were the incidence of ILI and the rate of laboratory-confirmed influenza. Secondary outcomes included traditional Chinese medicine (TCM) symptom score scale for influenza, influenza-related emergency (outpatient) visit rate, influenza hospitalization rate, and time to onset after exposure to influenza cases. ResultsA total of 216 participants were enrolled, with 108 in the observation group and 108 in the control group. Primary outcomes: (1) Incidence of ILI: The incidence was 12.0% (13/108) in the observation group and 23.1% (25/108) in the control group, with the observation group showing a significantly lower incidence (χ2=4.6, P<0.05). (2) Influenza confirmation rate: 3.7% (4/108) in the observation group and 4.6% (5/108) in the control group, with no statistically significant difference. Secondary outcomes: (1) TCM symptom score scale: after onset, nasal congestion and runny nose scores differed significantly between the two groups (P<0.05), while other symptoms such as fever, sore throat, and cough showed no significant differences. (2) Influenza-related emergency (outpatient) visit rate: 84.6% (11 cases) in the observation group and 96.0% (24 cases) in the control group, with no significant difference. (3) Time to onset after exposure: The median onset time after exposure to index patients was 7 days in the observation group and 4 days in the control group, with a statistically significant difference (P<0.05). ConclusionIn previously healthy children exposed to infectious influenza cases under unprotected conditions, Xiaoji Hufei formula prophylaxis significantly reduced the incidence of ILI. Xiaoji Hufei Formula can be recommended as a specific preventive prescription for influenza in children.
5.Screening of initial processing methods for Ligusticum sinense slice based on differential metabolites
Yu HE ; Yanjing DONG ; Qian QIN ; Danyang WU ; Conglong XU ; Shouwen ZHANG
China Pharmacy 2025;36(11):1317-1322
OBJECTIVE To screen the primary processing methods of Ligusticum sinense slice based on differential metabolites, and provide theoretical basis for the scientific processing of L. sinense. METHODS Using 13 groups of L. sinense slice processed by fresh-cutting or traditional methods as samples, UHPLC-QE-MS was employed for metabolite identification. Multivariate statistical analysis was applied to screen differential metabolites among the 13 sample groups, analyzing the effects of washing, soaking, drying methods, and drying cycles on both the relative expressions of differential metabolites and the contents of carboxylic acids and their derivatives in the samples (to reflect the total amino acid content). RESULTS Principal component analysis and partial least squares-discriminant analysis both showed significant intergroup differences among the 13 sample groups. A total of 688 differential metabolites were screened from the 13 sample groups, with carboxylic acids and their derivatives showing the highest proportion. The relative expression levels of phosphatidylcholine significantly increased after washing treatment, while tryptophan expression significantly decreased after soaking treatment. Samples dried at 50-60 ℃ showed significantly increased expression of psoralen, whereas those dried at 40 ℃ showed significantly decreased expression of methyl -p- methoxycinnamate. Both washing and soaking treatments significantly reduced the total amino acid content in samples, while secondary drying significantly increased it. The three controlled-temperature drying methods maintained relatively stable total content of amino acids in samples. CONCLUSIONS The optimal processing protocol for L. sinense slice is as follows: fresh L. sinense slice should be freshly cut at the production site, undergo quick washing after soil removal, and be dried twice at 40 ℃ (before and after slicing).
6.A new classification of atlas fracture based on computed tomography: reliability, reproducibility, and preliminary clinical significance
Yun-lin CHEN ; Wei-yu JIANG ; Wen-jie LU ; Xu-dong HU ; Yang WANG ; Wei-hu MA
Asian Spine Journal 2025;19(1):3-9
Methods:
Seventy-five patients with atlas fracture were included from January 2015 to December 2020. Based on the anatomy of the fracture line, atlas fractures were divided into three types. Each type was divided into two subtypes according to the fracture displacement. Unweighted Cohen kappa coefficients were applied to evaluate the reliability and reproducibility.
Results:
According to the new classification, 17 cases of type A1, 12 of type A2, seven of type B1, 13 of type B2, 12 of type C1, and 14 of type C2 were identified. The K-values of the interobserver and intraobserver reliability were 0.846 and 0.912, respectively, for the new classification. The K-values of interobserver reliability for types A, B, and C were 0.843, 0.799, and 0.898, respectively. The K-values of intraobserver reliability for types A, B, and C were 0.888, 0.910, and 0.935, respectively. The mean K-values of the interobserver and intraobserver reliability for subtypes were 0.687 and 0.829, respectively.
Conclusions
The new classification of atlas fractures can cover nearly all atlas fractures. This system is the first to evaluate the severity of fractures based on the C1 articular facet and fracture displacement and strengthen the anatomy ring of the atlas. It is concise, easy to remember, reliable, and reproducible.
7.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
8.A new classification of atlas fracture based on computed tomography: reliability, reproducibility, and preliminary clinical significance
Yun-lin CHEN ; Wei-yu JIANG ; Wen-jie LU ; Xu-dong HU ; Yang WANG ; Wei-hu MA
Asian Spine Journal 2025;19(1):3-9
Methods:
Seventy-five patients with atlas fracture were included from January 2015 to December 2020. Based on the anatomy of the fracture line, atlas fractures were divided into three types. Each type was divided into two subtypes according to the fracture displacement. Unweighted Cohen kappa coefficients were applied to evaluate the reliability and reproducibility.
Results:
According to the new classification, 17 cases of type A1, 12 of type A2, seven of type B1, 13 of type B2, 12 of type C1, and 14 of type C2 were identified. The K-values of the interobserver and intraobserver reliability were 0.846 and 0.912, respectively, for the new classification. The K-values of interobserver reliability for types A, B, and C were 0.843, 0.799, and 0.898, respectively. The K-values of intraobserver reliability for types A, B, and C were 0.888, 0.910, and 0.935, respectively. The mean K-values of the interobserver and intraobserver reliability for subtypes were 0.687 and 0.829, respectively.
Conclusions
The new classification of atlas fractures can cover nearly all atlas fractures. This system is the first to evaluate the severity of fractures based on the C1 articular facet and fracture displacement and strengthen the anatomy ring of the atlas. It is concise, easy to remember, reliable, and reproducible.
9.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
10.Development of classification and grading performance evaluation indicators for public health staff in district CDCs based on job competencies
Xiaohua LIU ; Dandan YU ; Huilin XU ; Dandan HE ; Yizhou CAI ; Nian LIU ; Linjuan DONG ; Xiaoli XU
Shanghai Journal of Preventive Medicine 2025;37(1):84-88
ObjectiveTo explore the establishment of performance assessment indicators for the classification and grading of public health staff in district-level Centers for Disease Control and Prevention (CDCs), and to provide a basis for such evaluations. MethodsThrough literature review and group interviews, performance evaluation indicators were developed based on competency evaluation. Experts were invited to evaluate the weight of performance evaluation indicators for public health staff from different categories, with the average value used to represent the weight of each indicator. ResultsTwenty-nine experts from universities in Shanghai, municipal CDCs, and district CDCs participated, yielding an expert authority coefficient of 0.86. The performance evaluation indicators for department managers were categorized into three levels, with 4 indicators at the primary level, 16 indicators at the secondary level, and 42 indicators at the tertiary level, while those for general staff included 4 primary indicators, 15 secondary indicators, and 36 tertiary indicators. Significant differences were observed in the weight coefficients of the primary indicators (internal operations, professional work, and learning and growth) between department managers and general staff. The top three secondary indicators for department managers were department management, monitoring and prevention, and level of expertise. For mid-level and senior staff, the top three secondary indicators were monitoring and prevention, level of expertise, and research work. The top three secondary indicators for junior staff were monitoring and prevention, professional expertise, and professional attitude. No significant statistical differences were found among tertiary indicators. ConclusionThe developed performance evaluation indicators are reliable. Staff at different levels and classifications should be evaluated using different performance evaluation standards to accurately reflect individual performance and contributions.

Result Analysis
Print
Save
E-mail