1.The effect of rutaecarpine on improving fatty liver and osteoporosis in MAFLD mice
Yu-hao ZHANG ; Yi-ning LI ; Xin-hai JIANG ; Wei-zhi WANG ; Shun-wang LI ; Ren SHENG ; Li-juan LEI ; Yu-yan ZHANG ; Jing-rui WANG ; Xin-wei WEI ; Yan-ni XU ; Yan LIN ; Lin TANG ; Shu-yi SI
Acta Pharmaceutica Sinica 2025;60(1):141-149
Metabolic-associated fatty liver disease (MAFLD) and osteoporosis (OP) are two very common metabolic diseases. A growing body of experimental evidence supports a pathophysiological link between MAFLD and OP. MAFLD is often associated with the development of OP. Rutaecarpine (RUT) is one of the main active components of Chinese medicine Euodiae Fructus. Our previous studies have demonstrated that RUT has lipid-lowering, anti-inflammatory and anti-atherosclerotic effects, and can improve the OP of rats. However, whether RUT can improve both fatty liver and OP symptoms of MAFLD mice at the same time remains to be investigated. In this study, we used C57BL/6 mice fed a high-fat diet (HFD) for 4 months to construct a MAFLD model, and gave the mice a low dose (5 mg·kg-1) and a high dose (15 mg·kg-1) of RUT by gavage for 4 weeks. The effects of RUT on liver steatosis and bone metabolism were then evaluated at the end of the experiment [this experiment was approved by the Experimental Animal Ethics Committee of Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences (approval number: IMB-20190124D303)]. The results showed that RUT treatment significantly reduced hepatic steatosis and lipid accumulation, and significantly reduced bone loss and promoted bone formation. In summary, this study shows that RUT has an effect of improving fatty liver and OP in MAFLD mice.
2.The Invariant Neural Representation of Neurons in Pigeon’s Ventrolateral Mesopallium to Stereoscopic Shadow Shapes
Xiao-Ke NIU ; Meng-Bo ZHANG ; Yan-Yan PENG ; Yong-Hao HAN ; Qing-Yu WANG ; Yi-Xin DENG ; Zhi-Hui LI
Progress in Biochemistry and Biophysics 2025;52(10):2614-2626
ObjectiveIn nature, objects cast shadows due to illumination, forming the basis for stereoscopic perception. Birds need to adapt to changes in lighting (meaning they can recognize stereoscopic shapes even when shadows look different) to accurately perceive different three-dimensional forms. However, how neurons in the key visual brain area in birds handle these lighting changes remains largely unreported. In this study, pigeons (Columba livia) were used as subjects to investigate how neurons in pigeon’s ventrolateral mesopallium (MVL) represent stereoscopic shapes consistently, regardless of changes in lighting. MethodsVisual cognitive training combined with neuronal recording was employed. Pigeons were first trained to discriminate different stereoscopic shapes (concave/convex). We then tested whether and how light luminance angle and surface appearance of the stereoscopic shapes affect their recognition accuracy, and further verify whether the results rely on specify luminance color. Simultaneously, neuronal firing activity of neurons was recorded with multiple electrode array implanted from the MVL during the presentation of difference shapes. The response was finally analyzed how selectively they responded to different stereoscopic shapes and whether their selectivity was affected by the changes of luminance condition (like lighting angle) or surface look. Support vector machine (SVM) models were trained on neuronal population responses recorded under one condition (light luminance angle of 45°) and used to decode responses under other conditions (light luminance angle of 135°, 225°, 315°) to verify the invariance of responses to different luminance conditions. ResultsBehavioral results from 6 pigeons consistently showed that the pigeons could reliably identify the core 3D shape (over 80% accuracy), and this ability wasn’t affected by changes in light angle or surface appearance. Statistical analysis of 88 recorded neurons from 6 pigeons revealed that 83% (73/88) showed strong selectivity for specific 3D shapes (selectivity index>0.3), and responses to convex shapes were consistently stronger than to concave shapes. These shape-selective responses remained stable across changes in light angle and surface appearance. Neural patterns were consistent under both blue and orange lighting. The decoding accuracy achieves above 70%, suggesting stable responses under different conditions (e.g., different lighting angles or surface appearance). ConclusionNeurons in the pigeon MVL maintain a consistent neural encoding pattern for different stereoscopic shapes, unaffected by illumination or surface appearance. This ensures stable object recognition by pigeons in changing visual environments. Our findings provide new physiological evidence for understanding how birds achieve stable perception (“invariant neural representations”) while coping with variations in the visual field.
3.Myricetin attenuates renal fibrosis by activating Nrf2/HO-1 pathway to inhibit oxidative stress
Dong-xue LI ; Zhou HUANG ; Han-yu WANG ; Zhi-hao ZHANG ; Ning-hua TAN ; Xue-yang DENG
Acta Pharmaceutica Sinica 2024;59(2):359-367
This paper investigates the effect of myricetin (MYR) on renal fibrosis induced by unilateral ureteral obstruction (UUO) and common bile duct ligation (CBDL) in mice and its mechanism. The animal experiment has been approved by the Ethics Committee of China Pharmaceutical University (NO: 2022-10-020). Thirty-five ICR mice were divided into control, UUO, UUO+MYR, CBDL and CBDL+MYR groups. H&E and Masson staining were used to detect pathological changes in kidney tissues. Western blot (WB) was used to detect the expression of fibrosis-related proteins in renal tissue, and total superoxide dismutase (SOD) activity detection kit (WST-8) was used to detect the changes of total SOD in renal tissue of CBDL mice.
4.Postoperative pulmonary infection in elderly patients with hip fracture:construction of a nomogram model for influencing factors and risk prediction
Haotian WANG ; Mao WU ; Junfeng YANG ; Yang SHAO ; Shaoshuo LI ; Heng YIN ; Hao YU ; Guopeng WANG ; Zhi TANG ; Chengwei ZHOU ; Jianwei WANG
Chinese Journal of Tissue Engineering Research 2024;28(36):5785-5792
BACKGROUND:Establishing a nomogram prediction model for postoperative pulmonary infection in hip fractures and taking early intervention measures is crucial for improving patients'quality of life and reducing medical costs. OBJECTIVE:To construct a nomogram risk prediction model of postoperative pulmonary infection in elderly patients with hip fracture,and provide theoretical basis for feasible prevention and early intervention. METHODS:Case data of 305 elderly patients with hip fractures who underwent surgical treatment at Wuxi Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine between January and October 2020(training set)were retrospectively analyzed.Using univariate and multivariate logistic regression analysis and Hosmer-Lemeshow goodness of fit test,receiver operating characteristic curve was utilized to analyze the diagnostic predictive efficacy of independent risk factors and joint models for postoperative pulmonary infections.Tools glmnet,pROC,and rms in R Studio software were applied to construct a nomogram model for predicting the risk of postoperative pulmonary infection in elderly patients with hip fractures,and calibration curves were further drawn to verify the predictive ability of the nomogram model.Receiver operating characteristic curves,calibration curves,and decision curves were analyzed for 133 elderly patients with hip fractures(validation set)receiving surgery at the same hospital from November 2022 to March 2023 to further predict the predictive ability of the nomogram model. RESULTS AND CONCLUSION:(1)The postoperative pulmonary infection rate in elderly patients with hip fractures in this group was 9.18%(28/305).(2)Single factor and multivariate analysis,as well as forest plots,showed that preoperative hospitalization days,leukocyte count,hypersensitive C-reactive protein,and serum sodium levels were independent risk factors(P<0.05).The Hosmer-Lemeshow goodness of fit test showed good fit(χ2=4.57,P=0.803).Receiver operating characteristic curve analysis was conducted on the independent risk factors and their joint models mentioned above,and the differentiation of each independent risk factor and joint model was good,with statistical significance(P<0.05).(3)The graphical calibration method,C-index,and decision curve were used to validate the nomogram prediction model.The predicted calibration curve was located between the standard curve and the acceptable line,and the predicted risk of the nomogram model was consistent with the actual risk.(4)The validation set used receiver operating characteristic curve,graphic calibration method,and decision curve to validate the prediction model.The results showed good consistency with clinical practice,indicating that the model had a good fit.The nomogram risk prediction model constructed for postoperative pulmonary infection in elderly patients with hip fractures has good predictive performance.The use of the nomogram risk prediction model can screen high-risk populations and provide a theoretical basis for early intervention.
5.Clinical features and initial outcomes in elderly patients with idiopathic membranous nephropathy
Jinxiu LIANG ; Fangxiao XIA ; Wenke HAO ; Wenxue HU ; Yanhua WU ; Feng YU ; Zhi ZHAO ; Wei LIU
Chinese Journal of Geriatrics 2024;43(2):168-174
Objective:The purpose of this study was to examine the clinical features and initial treatment outcomes of elderly individuals with idiopathic membranous nephropathy.Methods:This study retrospectively analyzed the clinical characteristics and therapeutic effect of hospitalized patients aged 60 years or older with renal-biopsy-proven idiopathic membranous nephropathy for at least one year.Results:This study enrolled a total of 91 elderly patients with IMN, consisting of 51 males(56.0%)and 40 females(44.0%). The median age of the patients was 67 years.The urinary protein creatinine ratio(uPCR)and urinary albumin creatinine ratio(uACR)of the patients were 4 454.3 mg/g and 2 258.5 mg/g, respectively.The median 24-hour urinary protein and urinary albumin levels were 5 098.2 mg/24 h and 2 800.6 mg/24 h, respectively.The average estimated glomerular filtration rate(eGFR)was(60.5±20.4)ml·min -1·1.73 m -2.Out of the total of 61 patients, 67.0% achieved remission, including complete and partial remission, within a year of renal biopsy.The levels of uPCR and uACR were significantly higher in the non-remission group compared to the remission group(5 462.5 vs.2 271.1 mg/g, P<0.001; 2 774.4 vs.1 320.0 mg/g, P=0.001). Additionally, the levels of 24h urinary protein and urinary albumin were significantly higher in the non-remission group compared to the remission group(6 526.4 vs.3 210.4 mg/g, P=0.002; 3 067.7 vs.2 102.4 mg/g, P=0.007). The remission group had a higher proportion of patients receiving immunosuppressive therapy(85.2% vs.33.3%, P<0.001). The remission rates were higher in patients treated with glucocorticoid combined with cyclophosphamide, glucocorticoid combined with calcineurin inhibitors, or glucocorticoid combined with mycophenolate mofetil compared to those receiving conservative treatment(88.2% vs.31.0%, P=0.001; 80.0% vs.31.0%, P<0.001; 100.0% vs.31.0%, P=0.007). There was no significant difference in remission rate between the three immunosuppressive therapy groups( P>0.05). However, upon further analysis, it was found that the levels of uPCR, uACR, and serum cystatin C(CysC)were higher in the immunosuppressive therapy groups compared to conservative treatment.Additionally, serum total protein and albumin were lower in the immunosuppressive therapy groups, and these differences were statistically significant( P<0.05). Conclusions:The majority of elderly patients diagnosed with IMN have multiple comorbidities.For those at high risk with elevated urinary protein levels, early initiation of immunosuppressive therapy may lead to a higher initial urinary protein remission rate.Therefore, it is advisable to develop individualized treatment plans for elderly patients with IMN based on their clinical characteristics, as well as the risks and benefits associated with immunosuppressive therapy.
6.Mechanism of Yi Sui Sheng Xue Fang in improving renal injury induced by chemotherapy in mice based on Keap1/Nrf2 signaling pathway
Yu LIU ; Li-Ying ZHANG ; Ya-Feng QI ; Yang-Yang LI ; Shang-Zu ZHANG ; Qian XU ; Guo-Xiong HAO ; Fan NIU ; Yong-Qi LIU ; Zhi-Ming ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(5):703-707
Objective To study the effect and mechanism of action of Yi Sui Sheng Xue Fang(YSSX)in ameliorating chemotherapy-induced renal injury in mice through The Kelch-like ECH-associated protein 1(KEAP1)/Nuclear factor erythroid-derived 2-like 2(NRF2)signalling pathway.Methods A mouse kidney injury model was induced by intraperitoneal injection of carboplatin(40 mg·kg-1).C57BL/6 mice were randomly divided into blank group(0.9%NaCl),model group(kidney injury model)and experimental-L,experimental-M,experimental-H groups(0.53,1.05 and 2.10 g·kg-1·d-1 YSSX by gavage for 7 d).Keap1 and Nrf2 were determined by Western blot;superoxide dismutase(SOD)and malondialdehyde(MDA)activities were determined by spectrophotometry.Results The protein expression levels of Keap1 in blank group,model group and experimental-L,experimental-M,experimental-H groups were 0.26±0.02,0.64±0.03,0.59±0.01,0.45±0.05 and 0.34±0.02;the protein expression levels of Nrf2 were 0.69±0.06,0.35±0.01,0.36±0.01,0.48±0.02 and 0.56±0.01;the enzyme activities of catalase(CAT)were(572.49±912.92),(334.60±4.92),(402.76±9.80),(475.35±5.21)and(493.00±12.03)U·mg-1;glutathione(GSH)were(2.79±0.06),(0.51±0.01),(0.59±0.07),(1.29±0.04)and(1.70±0.08)μmol·L1;SOD were(477.00±4.32),(260.67±6.13),(272.67±2.87),(386.33±3.68)and(395.00±12.25)U·mL-1;MDA were(3.89±0.02),(7.32±0.03),(6.94±0.14),(4.60±0.01)and(4.34±0.02)nmol·mg prot-1.The differences of the above indexes in the model group compared with the blank group were statistically significant(P<0.01,P<0.001);the differences of the above indexes in experimental-M,experimental-H groups compared withe model group were statistically significant(P<0.01,P<0.001).Conclusion YSSX can activate Keap1/Nrf2 signaling pathway and regulate the oxidative stress state of the organism,thus improving the renal injury caused by chemotherapy in mice.
7.Pathological mechanism of hypoxia-inducible factor-1α in tumours and the current status of research on Chinese medicine intervention
Yu LIU ; Li-Ying ZHANG ; Guo-Xiong HAO ; Ya-Feng QI ; Qian XU ; Ye-Yuan LIU ; Chao YUAN ; Peng ZHU ; Yong-Qi LIU ; Zhi-Ming ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(11):1670-1674
Traditional Chinese medicine can regulate the hypoxia-inducible factor-1α(HIF-1α)signalling pathway and slow down tumour progression mainly by inhibiting tumour angiogenesis,glycolysis,epithelial mesenchymal transition and other pathological processes.This paper,starting from HIF-1α and related factors,reviews its pathological mechanism in tumours and the research of traditional Chinese medicine interventions with the aim of providing theoretical references for the treatment of tumours with traditional Chinese medicine.
8.Establishment of a Multiplex Detection Method for Common Bacteria in Blood Based on Human Mannan-Binding Lectin Protein-Conjugated Magnetic Bead Enrichment Combined with Recombinase-Aided PCR Technology
Jin Zi ZHAO ; Ping Xiao CHEN ; Wei Shao HUA ; Yu Feng LI ; Meng ZHAO ; Hao Chen XING ; Jie WANG ; Yu Feng TIAN ; Qing Rui ZHANG ; Na Xiao LYU ; Qiang Zhi HAN ; Xin Yu WANG ; Yi Hong LI ; Xin Xin SHEN ; Jun Xue MA ; Qing Yan TIE
Biomedical and Environmental Sciences 2024;37(4):387-398
Objective Recombinase-aided polymerase chain reaction(RAP)is a sensitive,single-tube,two-stage nucleic acid amplification method.This study aimed to develop an assay that can be used for the early diagnosis of three types of bacteremia caused by Staphylococcus aureus(SA),Pseudomonas aeruginosa(PA),and Acinetobacter baumannii(AB)in the bloodstream based on recombinant human mannan-binding lectin protein(M1 protein)-conjugated magnetic bead(M1 bead)enrichment of pathogens combined with RAP. Methods Recombinant plasmids were used to evaluate the assay sensitivity.Common blood influenza bacteria were used for the specific detection.Simulated and clinical plasma samples were enriched with M1 beads and then subjected to multiple recombinase-aided PCR(M-RAP)and quantitative PCR(qPCR)assays.Kappa analysis was used to evaluate the consistency between the two assays. Results The M-RAP method had sensitivity rates of 1,10,and 1 copies/μL for the detection of SA,PA,and AB plasmids,respectively,without cross-reaction to other bacterial species.The M-RAP assay obtained results for<10 CFU/mL pathogens in the blood within 4 h,with higher sensitivity than qPCR.M-RAP and qPCR for SA,PA,and AB yielded Kappa values of 0.839,0.815,and 0.856,respectively(P<0.05). Conclusion An M-RAP assay for SA,PA,and AB in blood samples utilizing M1 bead enrichment has been developed and can be potentially used for the early detection of bacteremia.
9.Interactions between gut microbiota-producing enzymes and natural drugs affect disease progression
Zhi-yu WANG ; Hao-ran SHEN ; Yan-xing HAN ; Jian-dong JIANG ; Wei JIANG ; Hui-hui GUO
Acta Pharmaceutica Sinica 2024;59(8):2183-2191
Naturally derived metabolites are valuable resources for drug research and development, and play an important role in the treatment of diseases. As the "second genome" of the body, gut microbiota is rich in metabolic enzymes, which interacts with external substances such as drugs, thus affecting the progression of diseases. This article summarizes the interaction between gut microbiota-producing enzymes and natural medicines, and focuses on the impact of this interaction on disease progression, hoping to provide new ideas for the development and pharmacological mechanism of natural medicines.
10.Advances of CRISPR/Cas-based Biosensor in Detection of Food-Borne Pathogens
Xiao-Yuan ZHANG ; Zhi-Hao YAO ; Kai-Yu HE ; Hong-Mei WANG ; Xia-Hong XU ; Zu-Fang WU ; Liu WANG
Chinese Journal of Analytical Chemistry 2024;52(4):469-480
Rapid and accurate detection methods for food-borne pathogens are essential to ensure food safety and human health.One promising innovation in this area is the clustered regularly interspaced short palindromic repeats/CRISPR-associated systems(CRISPR/Cas)biosensor,which utilizes Cas protein and CRISPR RNA(crRNA)ribonucleo protein to specifically recognize target genes,and converts target signals into detectable physical and chemical signals.The CRISPR/Cas biosensor shows many advantages,such as high specificity,programmability,and ease of use,making it promising to pathogen detection.This paper introduced the principles and characteristics of CRISPR/Cas systems,along with the strategies for signal recognition,amplification,and output based on different CRISPR/Cas biosensors,and their respective applications in food-borne pathogen detection.Furthermore,the construction principles and challenges of multiple biosensors based on CRISPR/Cas were explored,as well as their potential for simultaneous detection of multiple pathogens.Finally,the challenges and future development trends of CRISPR/Cas-based biosensors in rapid pathogen detection were discussed,aiming to provide valuable reference and inspiration for biosensor designers and food safety practitioners.

Result Analysis
Print
Save
E-mail