1.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement.
Liyuan CHEN ; Huajie YU ; Zixin LI ; Yu WANG ; Shanshan JIN ; Min YU ; Lisha ZHU ; Chengye DING ; Xiaolan WU ; Tianhao WU ; Chunlei XUN ; Yanheng ZHOU ; Danqing HE ; Yan LIU
International Journal of Oral Science 2024;16(1):3-3
Pyroptosis, an inflammatory caspase-dependent programmed cell death, plays a vital role in maintaining tissue homeostasis and activating inflammatory responses. Orthodontic tooth movement (OTM) is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament (PDL) progenitor cells. However, whether and how force induces PDL progenitor cell pyroptosis, thereby influencing OTM and alveolar bone remodeling remains unknown. In this study, we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process. Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively. Using Caspase-1-/- mice, we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1. Moreover, mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro, which influenced osteoclastogenesis. Mechanistically, transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells. Overall, this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli, indicating a promising approach to accelerate OTM by targeting Caspase-1.
Animals
;
Humans
;
Mice
;
Rats
;
Bone Remodeling/physiology*
;
Caspase 1
;
Periodontal Ligament
;
Pyroptosis
;
Tooth Movement Techniques
2.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
3.The incidence and metabolic profiles of adrenal incidentalomas in patients with diabetes
Yingning LIU ; Xiantong ZOU ; Wei ZHAO ; Xun YAO ; Lexuan WANG ; Lingli ZHOU ; Rui ZHANG ; Yingying LUO ; Meng LI ; Xiuying ZHANG ; Yu ZHU ; Xiaoling CAI ; Xianghai ZHOU ; Xueyao HAN ; Linong JI
Chinese Journal of Endocrinology and Metabolism 2024;40(3):192-197
Objective:To determine the incidence of adrenal incidentalomas(AIs) in patients with diabetes mellitus and the metabolism profiles.Methods:A total of 615 hospitalized patients with diabetes mellitus in the Department of Endocrinology and Metabolism of Peking University People′s Hospital from March 2020 to May 2021 were retrospectively included in this study. AIs were screened by unenhanced chest computed tomography(CT) retrospectively and subsequently confirmed by multiplanar reconstruction. Participants′ physical indicators, metabolic profiles, and adrenal function parameters were collected. Unpaired t test, Mann-Whitney U test, and Chi-Square test were adopted to compare the metabolism profiles between diabetes mellitus patients with or without AIs. Regression models were used to estimate the correlations between AIs and the metabolism profiles such as blood glucose, blood lipids, blood pressure, and the adrenal function parameters.Results:Twenty-seven out of 615 participants were detected with AIs(4.4%). Patients with AIs had higher body mass index, waist circumference, and hip circumference than patients without AIs [(29.4±5.1)kg/m 2vs(26.8±3.8)kg/m 2,P=0.018; (102.3±11.7)cm vs(95.8±10.3)cm, P=0.002; (107.3±10.1)cm vs(101.4±7.6)cm, P=0.008]. The levels of serum uric acid and urinary albumin/creatinine ratio were also significantly increased in patients with AIs [(409.6±118.1)μmol/L vs(357.4±100.6)μmol/L, P=0.009; 21.25(7.49, 180.24)mg/g vs 8.60(4.71, 34.56)mg/g, P=0.010]. Besides, individuals with AIs were also associated with a higher risk of co-existing hypertension( P=0.045). Conclusion:The incidence of AIs in patients with diabetes is 4.4%. The presence of AIs in patients with diabetes may associated with increased risk of obesity and hypertension.
4.Safety of modified radical prostatectomy by transperineal injection of sodium hyaluronate to the Dirichlet gap: an animal experiment
Jinbang WU ; Bo ZHU ; Weidong CHEN ; Fei CHEN ; Chunhong FAN ; Tingting YU ; Taotao DONG ; Xun LIU ; Yunhan WANG ; Zili WANG
Journal of Modern Urology 2024;29(3):268-272
【Objective】 To explore the safety of transrectal ultrasound-guided transperineal injection of sodium hyaluronate to expand the Dirichlet gap in laparoscopic radical prostatectomy. 【Methods】 A total of 14 healthy male purebred beagle dogs were selected and randomly divided into 2 groups, with 7 in either group.The control group was treated with conventional laparoscopic radical prostatectomy, while the experimental group was treated with laparoscopic radical prostatectomy after 2.5 mL sodium hyaluronate was injected into the Dirichlet gap under the guidance of transrectal ultrasound.The total operation time, prostate separation time, intraoperative blood loss and rectal status of the 2 groups were observed. 【Results】 After the injection of sodium hyaluronate into the Dirichlet gap between the prostate and the rectum, no rectal tissue was found in the prostate, and no obvious damage was found in the posterior rectum in either groups.The postoperative hemoglobin (HGB) was [(118.70±2.56) g/L vs.(122.10±2.19) g/L, P=0.02]; the total operation time was [(141.40±9.80) min vs.(119.10±9.16) min, P<0.05]; the prostate separation time was [(24.99±1.75) min vs.(16.64±2.34) min, P<0.05]; the amount of bleeding was [(47.43±4.32) mL vs.(34.86±5.18) mL, P<0.05] in the control group and experimental group. 【Conclusion】 Laparoscopic radical prostatectomy performed after 2.5 mL of sodium hyaluronate injection into the Dirichlet gap under the guidance of transrectal ultrasound can shorten the total operation time, the separation and resection time of the prostate, and reduce the amount of bleeding, which can improve and reduce the incidence of rectal injury, and prove the feasibility of this approach for prostatic cancer.
5.Exploration on Characteristics of Acupoint Efficacy Based on the Self-developed ACU&MOX-DATA Platform
Sihui LI ; Shuqing LIU ; Qiang TANG ; Ruibin ZHANG ; Wei CHEN ; Hao HONG ; Bingmei ZHU ; Xun LAN ; Yong WANG ; Shuguang YU ; Qiaofeng WU
Chinese Journal of Information on Traditional Chinese Medicine 2024;31(2):64-69
Objective To explore the effects of different acupoints,different target organs,and different interventions on acupoint efficacy based on ACU&MOX-DATA platform;To illustrate and visualize whether the above factors have the characteristics of"specific effect"or"common effect"of acupoint efficacy.Methods The multi-source heterogeneous data were integrated from the original omics data and public omics data.After standardization,differential gene analysis,disease pathology network analysis,and enrichment analysis were performed using Batch Search and Stimulation Mode modules in ACU&MOX-DATA platform under the conditions of different acupoints,different target organs,and different interventions.Results Under the same disease state and the same intervention,there were differences in effects among different acupoints;under the same disease state,the same acupoint and intervention,the responses produced by different target organs were not completely consistent;under the same disease state and acupoint,there were differences in effects among different intervention measures.Conclusion Based on the analysis of ACU&MOX-DATA platform,it is preliminary clear that acupoints,target organs,and interventions are the key factors affecting acupoint efficacy.Meanwhile,the above results have indicated that there are specific or common regulatory characteristics of acupoint efficacy.Applying ACU&MOX-DATA platform to analyze and visualize the critical scientific problems in the field of acupuncture and moxibustion can provide references for deepening acupoint cognition,guiding clinical acupoint selection,and improving clinical efficacy.
6.HIC Value of Mild Traumatic Rats under Anterior-Posterior and Lateral-Medial Craniocerebral Impact:An Equivalent Study
Guoxiang WANG ; Linna ZHU ; Xun WANG ; Qiuju CHEN ; Tao XIONG ; Qinghang LUO ; Jia YU ; Jingyu XU ; Zhiyong YIN ; Shengxiong LIU
Journal of Medical Biomechanics 2024;39(4):730-735
Objective To investigate the equivalent conversion of head injury criterion(HIC)under anterior-posterior(AP)and lateral-medial(LM)craniocerebral impact for mild craniocerebral injury in rats using motor evoked potential(MEP)and β-amyloid precursor protein(β-APP)immunohistochemistry(IHC).Methods Sixty healthy adult male SD rats were randomly divided into 0 m control group,0.5 m-AP and 0.5 m-LM injury groups,and 1 m-AP and 1 m-LM injury groups(12 rats in each group).The control group did not undergo any impact injury experiment.After the impact injury experiment,the injury and control groups were subjected to excessive anesthesia to produce β-APP immunohistochemical stained slices,and the percentage of positive area and integral optical density(IOD)in the brainstem pyramidal tract area of the slices were determined.The MEP groups were divided in the same manner as the IHC groups and the MEP amplitudes of the MEP and control groups were measured after the impact injury experiment.Results With an increase in the degree of injury,the decrease in MEP amplitude,percentage of positive areas,and IOD in the injury groups significantly increased.When the degree of injury was low,the sensitivity of IHC was higher than that of MEP.When the degree of injury was the same,the HIC in the LM direction was lower than that in the AP direction.When the HIC was the same,the degree of injury in the LM direction was greater than that in the AP direction.Conclusions The joint evaluation of MEP and β-APP can provide experimental references for the study of HIC equivalent conversion in AP-LM craniocerebral impact injury.
7.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
8.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
9.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.
10.Force-induced Caspase-1-dependent pyroptosis regulates orthodontic tooth movement
Chen LIYUAN ; Yu HUAJIE ; Li ZIXIN ; Wang YU ; Jin SHANSHAN ; Yu MIN ; Zhu LISHA ; Ding CHENGYE ; Wu XIAOLAN ; Wu TIANHAO ; Xun CHUNLEI ; Zhou YANHENG ; He DANQING ; Liu YAN
International Journal of Oral Science 2024;16(2):238-250
Pyroptosis,an inflammatory caspase-dependent programmed cell death,plays a vital role in maintaining tissue homeostasis and activating inflammatory responses.Orthodontic tooth movement(OTM)is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament(PDL)progenitor cells.However,whether and how force induces PDL progenitor cell pyroptosis,thereby influencing OTM and alveolar bone remodeling remains unknown.In this study,we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process.Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively.Using Caspase-1-/-mice,we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1.Moreover,mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro,which influenced osteoclastogenesis.Mechanistically,transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells.Overall,this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli,indicating a promising approach to accelerate OTM by targeting Caspase-1.

Result Analysis
Print
Save
E-mail