1.Small Intestine Lipid Absorption and Health: The Improvement Effect of Exercise Under The Challenge of High-fat Diet
Wei-Huan WANG ; Yu-Xi DAI ; Yu-Xiu HE
Progress in Biochemistry and Biophysics 2025;52(6):1560-1573
The two core causes of obesity in modern lifestyle are high-fat diet (HFD) and insufficient physical activity. HFD can lead to disruption of gut microbiota and abnormal lipid metabolism, further exacerbating the process of obesity. The small intestine, as the “first checkpoint” for the digestion and absorption of dietary lipids into the body, plays a pivotal role in lipid metabolism. The small intestine is involved in the digestion, absorption, transport, and synthesis of dietary lipids. The absorption of lipids in the small intestine is a crucial step, as overactive absorption leads to a large amount of lipids entering the bloodstream, which affects the occurrence of obesity. HFD can lead to insulin resistance, disruption of gut microbiota, and inflammatory response in the body, which can further induce lipid absorption and metabolism disorders in the small intestine, thereby promoting the occurrence of chronic metabolic diseases such as obesity. Long term HFD can accelerate pathological structural remodeling and lipid absorption dysfunction of the small intestine: after high-fat diet, the small intestine becomes longer and heavier, with excessive villi elongation and microvilli elongation, thereby increasing the surface area of lipid absorption and causing lipid overload in the small intestine. In addition, overexpression of small intestine uptake transporters, intestinal mucosal damage induced “intestinal leakage”, dysbiosis of intestinal microbiota, ultimately leading to abnormal lipid absorption and chronic inflammation, accelerating lipid accumulation and obesity. Exercise, as one of the important means of simple, economical, and effective proactive health interventions, has always been highly regarded for its role in improving lipid metabolism homeostasis. The effect of exercise on small intestine lipid absorption shows a dose-dependent effect. Moderate to low-intensity aerobic exercise can improve the intestinal microenvironment, regulate the structure and lipid absorption function of the small intestine, promote lipid metabolism and health, while vigorous exercise, excessive exercise, and long-term high-intensity training can cause intestinal discomfort, leading to the destruction of intestinal structure and related symptoms, affecting lipid absorption. Long term regular exercise can regulate the diversity of intestinal microbiota, inhibit inflammatory signal transduction such as NF-κB, enhance intestinal mucosal barrier function, and improve intestinal lipid metabolism disorders, further enhancing the process of small intestinal lipid absorption. Exercise also participates in the remodeling process of small intestinal epithelial cells, regulating epithelial structural homeostasis by activating cell proliferation related pathways such as Wnt/β-catenin. Exercise can regulate the expression of lipid transport proteins CD36, FATP, and NPC1L1, and regulate the function of small intestine lipid absorption. However, the research on the effects of long-term exercise on small intestine structure, villus structure, absorption surface area, and lipid absorption related proteins is not systematic enough, the results are inconsistent, and the relevant mechanisms are not clear. In the future, experimental research can be conducted on the dose-response relationship of different intensities and forms of exercise, exploring the mechanisms of exercise improving small intestine lipid absorption and providing theoretical reference for scientific weight loss. It should be noted that the intestine is an organ that is sensitive to exercise response. How to determine the appropriate range, threshold, and form of exercise intensity to ensure beneficial regulation of intestinal lipid metabolism induced by exercise should become an important research direction in the future.
2.Exercise Improves Metaflammation: The Potential Regulatory Role of BDNF
Yu-Xi DAI ; Wei-Huan WANG ; Yu-Xiu HE
Progress in Biochemistry and Biophysics 2025;52(9):2314-2331
Metaflammation is a crucial mechanism in the onset and advancement of metabolic disorders, primarily defined by the activation of immune cells and increased concentrations of pro-inflammatory substances. The function of brain-derived neurotrophic factor (BDNF) in modulating immune and metabolic processes has garnered heightened interest, as BDNF suppresses glial cell activation and orchestrates inflammatory responses in the central nervous system via its receptor tyrosine kinase receptor B (TrkB), while also diminishing local inflammation in peripheral tissues by influencing macrophage polarization. Exercise, as a non-pharmacological intervention, is extensively employed to enhance metabolic disorders. A crucial mechanism underlying its efficacy is the significant induction of BDNF expression in central (hypothalamus, hippocampus, prefrontal cortex, and brainstem) and peripheral (liver, adipose tissue, intestines, and skeletal muscle) tissues and organs. This induction subsequently regulates inflammatory responses, ameliorates metabolic conditions, and decelerates disease progression. Consequently, BDNF is considered a pivotal molecule in the motor-metabolic regulation axis. Despite prior suggestions that BDNF may have a role in the regulation of exercise-induced inflammation, systematic data remains inadequate. Since that time, the field continues to lack structured descriptions and conversations pertinent to it. As exercise physiology research has advanced, the academic community has increasingly recognized that exercise is a multifaceted activity regulated by various systems, with its effects contingent upon the interplay of elements such as type, intensity, and frequency of exercise. Consequently, it is imperative to transcend the prior study paradigm that concentrated solely on localized effects and singular mechanisms and transition towards a comprehensive understanding of the systemic advantages of exercise. A multitude of investigations has validated that exercise confers health advantages for individuals with metabolic disorders, encompassing youngsters, adolescents, middle-aged individuals, and older persons, and typically enhances health via BDNF secretion. However, exercise is a double-edged sword; the relationship between exercise and health is not linearly positive. Insufficient exercise is ineffective, while excessive exercise can be detrimental to health. Consequently, it is crucial to scientifically develop exercise prescriptions, define appropriate exercise loads, and optimize health benefits to regulate bodily metabolism. BDNF mitigates metaflammation via many pathways during exercise. Initially, BDNF suppresses pro-inflammatory factors and facilitates the production of anti-inflammatory factors by modulating bidirectional transmission between neural and immune cells, therefore diminishing the inflammatory response. Secondly, exercise stimulates the PI3K/Akt, AMPK, and other signaling pathways via BDNF, enhancing insulin sensitivity, reducing lipotoxicity, and fostering mitochondrial production, so further optimizing the body’s metabolic condition. Moreover, exercise-induced BDNF contributes to the attenuation of systemic inflammation by collaborating with several organs, enhancing hepatic antioxidant capacity, regulating immunological response, and optimizing “gut-brain” axis functionality. These processes underscore the efficacy of exercise as a non-pharmacological intervention for enhancing anti-inflammatory and metabolic health. Despite substantial experimental evidence demonstrating the efficacy of exercise in mitigating inflammation and enhancing BDNF levels, numerous limitations persist in the existing studies. Primarily, the majority of studies have concentrated on molecular biology and lack causal experimental evidence that explicitly confirms BDNF as a crucial mediator in the exercise regulation of metaflammation. Furthermore, the outcomes of current molecular investigations are inadequately applicable to clinical practice, and a definitive pathway of “exercise-BDNF-metaflammation” remains unestablished. Moreover, the existing research methodology, reliant on animal models or limited human subject samples, constrains the broad dissemination of the findings. Future research should progressively transition from investigating isolated and localized pathways to a comprehensive multilevel and multidimensional framework that incorporates systems biology and exercise physiology. Practically, there is an immediate necessity to undertake extensive, double-blind, randomized controlled longitudinal human studies utilizing multi-omics technologies (e.g., transcriptomics, proteomics, and metabolomics) to investigate the principal signaling pathways of BDNF-mediated metaflammation and to elucidate the causal relationships and molecular mechanisms involved. Establishing a more comprehensive scientific evidence system aims to furnish a robust theoretical framework and practical guidance for the mechanistic interpretation, clinical application, and pharmaceutical development of exercise in the prevention and treatment of metabolic diseases.
3.The Emerged Perspective on Obesity Etiology: Metaflammation Induces Food Reward Dysfunction
Yu-Xi DAI ; Yu-Xiu HE ; Wei CHEN
Progress in Biochemistry and Biophysics 2024;51(6):1327-1340
In recent years, obesity has emerged as a significant risk factor jeopardizing human health and stands out as an urgent issue demanding attention from the global public health sector. The factors influencing obesity are intricate, making it challenging to comprehensively elucidate its causes. Recent studies indicate that food reward significantly contributes to the genesis and progression of obesity. Food reward comprises three integral components: hedonic value (liking), eating motivation (wanting), and learning and memory. Each facet is governed by the corresponding neural pathway. The mesocorticolimbic system (MS) plays a pivotal role in regulating food reward, wherein the MS encompasses dopamine (DA) neurons originating from the ventral tegmental area (VTA) projecting into various brain regions or nuclei such as the nucleus accumbens (NAc), prefrontal cortex (PFC), amygdala, and hippocampus. On one hand, prolonged consumption of palatable foods induces adaptive alterations and synaptic remodeling in neural circuits regulating food reward. This includes the attenuation of neuronal connections and signal transmission among the PFC, visual cortex, hypothalamus, midbrain, and brain stem, resulting in aberrant food reward and compelling the body to compensate for satisfaction deficiency by increasing food consumption. Studies involving humans and animals reveal that compulsive eating bears resemblance to the behavior observed in individuals with substance addictions, encompassing aspects such as food cravings, loss of eating control, and dieting failures. Propelled by food reward, individuals often opt for their preferred palatable foods during meals, potentially leading to excessive energy intake. Coupled with a sedentary lifestyle, this surplus energy is stored in the body, transforming into fat and culminating in obesity. While evidence supports the notion that prolonged exposure to a high-energy-density diet contributes to abnormal food reward, the internal mechanisms remain somewhat unclear. In previous research on depression, substance abuse, and alcohol dependence, it has been confirmed that there is a close connection between inflammation and reward. For example, obese people show a higher tendency toward depression, and white blood cell count is an important mediating variable between intake and depressive symptoms. In addition, it has been found in individuals with alcohol dependence and drug abuse that long-term opioid overdose or alcohol abuse will activate glial cells to release pro-inflammatory cytokines that affect neuronal function, and disrupt synaptic transmission of neurotransmitters to promote addictive behaviors. Comprehensive analysis suggests that inflammation may play an important role in the reward regulation process. Recent studies indicate that metaflammation within the central or peripheral system, triggered by excess nutrients and energy, can disrupt the normal transmission of reward signals. This disruption affects various elements, such as DA signaling (synthesis, release, reuptake, receptor function, and expression), mu opioid receptor function, glutamate excitatory synaptic transmission, Toll-like receptor 4 (TLR4) signal activation, and central insulin/leptin receptor signal transduction. Consequently, this disruption induces food reward dysfunction, thereby fostering the onset and progression of obesity. Building upon these findings, we hypothesized that obesity may be linked to abnormal food reward induced by metaflammation. This review aims to delve deeply into the intricate relationship between obesity, food reward, and metaflammation. Additionally, it seeks to summarize the potential mechanisms through which metaflammation induces food reward dysfunction, offering novel insights and a theoretical foundation for preventing and treating obesity.
4.Bioequivalence study of sidenafil citrate tablets in Chinese healthy subjects
Xiao-Bin LI ; Lu CHEN ; Xiu-Jun WU ; Yu-Xin GE ; Wen-Chao LU ; Ting XIAO ; He XIE ; Hua-Wei WANG ; Wen-Ping WANG
The Chinese Journal of Clinical Pharmacology 2024;40(3):430-434
Objective To evaluate the bioequivalence of oral sidenafil citrate tablets manufactured(100 mg)test preparations and reference preparations in healthy subjects under fasting and fed conditions.Methods Using a single-dose,randomized,open-lable,two-period,two-way crossover design,36 healthy subjects respectively for fasting and fed study were enrolled,and randomized into two groups to receive a single dose of test 100 mg with 7-day washout period.Plasma concentration of sidenafil and N-demethylsildenafil was determined by liquid chromatography-tandem mass spectrometry(LC-MS/MS)method.The pharmacokinetic parameters were calculated by Analyst 1.6.3(AB Scie)using non-compartmental model,and bioequivalence evaluation was performed for the two preparations.Relevant safety evaluations were performed during the trial.Results The main pharmacokinetic parameters of sidenafil after a single oral dose of sidenafil citrate tablets under fasting condition for test and reference were as follows:Cmax were(494.69±230.94)and(558.78±289.83)ng·mL-1,AUC0-t were(1 336.21±509.78)and(1 410.82±625.99)h·ng·mL-1,AUC0-were(1 366.49±512.16)and(1 441.84±628.04)h·ng·mL-1,respectively.The main pharmacokinetic parameters of sidenafil under fed condition for T and R were as follows:Cmax were(381.89±126.53)and(432.47±175.91)ng·mL-1,AUC0-t were(1 366.34±366.99)and(1 412.76±420.37)h·ng·mL-1,AUC0-were(1 403.28±375.32)and(1 454.13±429.87)h·ng·mL-1,respectively.The results demonstrated the bioequivalence of sidenafil citrate tablets between T and R.The incidence of adverse events in fasting and fed tests were 33.33%and 25.00%,respectively.No serious adverse event was reported.Conclusion The test and reference formulation of sidenafil citrate tablets were equivalent and was safe.
5.Method development and validation for testing the concentration of anti-TNF-α monoclonal antibody in serum based on ELISA
Zhen-Xiang HU ; Li-Xiu HE ; Bo WANG ; Xi CHEN ; Gui-Li LIU ; Yu-Min QIN
The Chinese Journal of Clinical Pharmacology 2024;40(11):1642-1645
Objective To establish an indirect enzyme-linked immunosorbent assay(ELISA)method for testing the concentration of a monoclonal antibody target tumor necrosis factor-α(TNF-α)in animal serum.Methods The critical parameters of the method including coating concentration of human TNF-α,source,concentration and stability of HRP-labeled goat anti-human immunoglobulin G(IgG)were investigated.The specificity,accuracy,precision,linearity and Limited of Determination of the method were investigated.Results The critical parameters of the method were confirmed as below:TNF-α was coated at 400 ng·mL-1;HRP labeled goat anti-human IgG antibody was diluted at 1:3.0 ×105;the diluted horseradish peroxidase labeled goat anti-human IgG antibody is well stored at 4 ℃ for 3 days.Meanwhile the method was confirmed to have good specificity,the recovery rate ranged from 84.00%to 106.82%,the coefficient of variation of different antibody concentration levels were no more than 10%;the method had a good linearity and the standard curve was y=(-8.37×103-2.37 × 106)/[1+(x/29.80)106]+2.37 × 106(R2=0.999);the limit of quantification was 1 ng·mL-1,all of which met the requirements.Conclusion A accurate and robust ELISA method was developed to test the concentration of anti-TNF-α monoclonal antibody in serum.
6.G-Quadruplex Dimer/ExonucleaseⅠAssisted Signal Amplification Strategy for Rapid Determination of Aflatoxin B1 Using a Paper Chip
Xuan HE ; Ji QI ; Zi-Hui YU ; Yan CHEN ; Xiu-Li FU
Chinese Journal of Analytical Chemistry 2024;52(8):1094-1102,中插1-中插5
In this work,a tetrahedral DNA nanostructure(TDN)functionalized rotational paper-based analytical device(RPAD)was constructed for rapid and highly sensitive detection of aflatoxin B1(AFB1)using exonucleaseⅠ(ExoⅠ)and G-quadruplex(G4)dimer.Herein,a single-stranded DNA,containing both of the G4 dimer sequence and AFB1 recognition sequence,was used as the recognition probe(G4 dimer probe).TDN was used to precisely regulate the orientation and distribution density of G4 dimer probe to improve the recognition efficiency of the system.ExoⅠas a single stranded DNA specific nuclease was introduced for effective amplification of the detection signal.G4 dimer was employed to enhance the fluorescence signal of thioflavin T(ThT).In the absence of AFB1,the G4 dimer structure of G4 dimer probe could specifically bind with ThT to generate dramatic fluorescence enhancement.However,in the presence of AFB1,AFB1 could specifically bind with G4 dimer probe,resulting in the dissociation of G4 dimer probe from TDN and further be digested by ExoⅠ.At the same time,the released AFB1 could bind to G4 dimer probe on the TDN again by this way to generate signal amplification.After this cycle,the amount of aptamer on the TDN was decreased,accompanied by the reduction of G4 dimer on TDN.In this case,the fluorescence intensity of the system was reduced.The designed RPAD showed a good linear response in AFB1 concentration range of 0.0001-500 ng/mL and the limit of detection was 0.1 pg/mL.Moreover,the proposed strategy was successfully applied to detection of AFB1 in peanut and wine.The developed TDN/G4 dimer/ExoⅠstrategy improved the specificity and sensitivity of the system significantly.
7.Compliance and Influencing Factors of Endoscopic Screening in High-Risk Population of Upper Gastroin-testinal Cancer in Chongqing
Jia DU ; Zhikai YU ; Yan ZHANG ; Qing GUO ; Shenglin ZHAO ; Xiu LIU ; Hong ZHOU ; Mei HE
China Cancer 2024;33(12):1019-1026
[Purpose]To analyze the compliance and influencing factors of endoscopic screening in high-risk population of upper gastrointestinal cancer(UGC)in Chongqing Municipality.[Methods]Risk assessment of UGC was conducted among residents aged 40~74 years old in the areas covered by the Chongqing Urban Cancer Early Diagnosis and Treatment Program from 2012 to 2019.The residents with high risk of UGC were advised to receive free endoscopic screening in designated hospitals.The compliance and influencing factors of endoscopic screening among high-risk sub-jects were analyzed.[Results]There were 266 611 residents who completed the questionnaires and UGC risk assessment,among whom 48 000(18.00%)were assessed as high risk.A total of 9 162 high-risk individuals received the following endoscopic screening with a compliance rate of 19.09%.Multivariate Logistic regression analysis showed that residents aged 45~64 years old,with high school or above education,divorced or widowed status,occupational exposure to haza-rdous substances,hot food preference,high fat diet,frequent consumption of pickled and dried food,exposure to kitchen fume,psychic trauma or depression,upper gastrointestinal disease his-tory and family history of UGC were likely to accept endoscopic screening;while those aged 70 years old and above,current smokers,and having regular physical exercise were likely to have low compliance.[Conclusion]Among high-risk residents of UGC in Chongqing,the compliance to endoscopic screening needs be improved,health education and management should be targeted to those likely to have low compliance.
8.A multicenter study of neonatal stroke in Shenzhen,China
Li-Xiu SHI ; Jin-Xing FENG ; Yan-Fang WEI ; Xin-Ru LU ; Yu-Xi ZHANG ; Lin-Ying YANG ; Sheng-Nan HE ; Pei-Juan CHEN ; Jing HAN ; Cheng CHEN ; Hui-Ying TU ; Zhang-Bin YU ; Jin-Jie HUANG ; Shu-Juan ZENG ; Wan-Ling CHEN ; Ying LIU ; Yan-Ping GUO ; Jiao-Yu MAO ; Xiao-Dong LI ; Qian-Shen ZHANG ; Zhi-Li XIE ; Mei-Ying HUANG ; Kun-Shan YAN ; Er-Ya YING ; Jun CHEN ; Yan-Rong WANG ; Ya-Ping LIU ; Bo SONG ; Hua-Yan LIU ; Xiao-Dong XIAO ; Hong TANG ; Yu-Na WANG ; Yin-Sha CAI ; Qi LONG ; Han-Qiang XU ; Hui-Zhan WANG ; Qian SUN ; Fang HAN ; Rui-Biao ZHANG ; Chuan-Zhong YANG ; Lei DOU ; Hui-Ju SHI ; Rui WANG ; Ping JIANG ; Shenzhen Neonatal Data Network
Chinese Journal of Contemporary Pediatrics 2024;26(5):450-455
Objective To investigate the incidence rate,clinical characteristics,and prognosis of neonatal stroke in Shenzhen,China.Methods Led by Shenzhen Children's Hospital,the Shenzhen Neonatal Data Collaboration Network organized 21 institutions to collect 36 cases of neonatal stroke from January 2020 to December 2022.The incidence,clinical characteristics,treatment,and prognosis of neonatal stroke in Shenzhen were analyzed.Results The incidence rate of neonatal stroke in 21 hospitals from 2020 to 2022 was 1/15 137,1/6 060,and 1/7 704,respectively.Ischemic stroke accounted for 75%(27/36);boys accounted for 64%(23/36).Among the 36 neonates,31(86%)had disease onset within 3 days after birth,and 19(53%)had convulsion as the initial presentation.Cerebral MRI showed that 22 neonates(61%)had left cerebral infarction and 13(36%)had basal ganglia infarction.Magnetic resonance angiography was performed for 12 neonates,among whom 9(75%)had involvement of the middle cerebral artery.Electroencephalography was performed for 29 neonates,with sharp waves in 21 neonates(72%)and seizures in 10 neonates(34%).Symptomatic/supportive treatment varied across different hospitals.Neonatal Behavioral Neurological Assessment was performed for 12 neonates(33%,12/36),with a mean score of(32±4)points.The prognosis of 27 neonates was followed up to around 12 months of age,with 44%(12/27)of the neonates having a good prognosis.Conclusions Ischemic stroke is the main type of neonatal stroke,often with convulsions as the initial presentation,involvement of the middle cerebral artery,sharp waves on electroencephalography,and a relatively low neurodevelopment score.Symptomatic/supportive treatment is the main treatment method,and some neonates tend to have a poor prognosis.
9.Risk factors for bronchopulmonary dysplasia in twin preterm infants:a multicenter study
Yu-Wei FAN ; Yi-Jia ZHANG ; He-Mei WEN ; Hong YAN ; Wei SHEN ; Yue-Qin DING ; Yun-Feng LONG ; Zhi-Gang ZHANG ; Gui-Fang LI ; Hong JIANG ; Hong-Ping RAO ; Jian-Wu QIU ; Xian WEI ; Ya-Yu ZHANG ; Ji-Bin ZENG ; Chang-Liang ZHAO ; Wei-Peng XU ; Fan WANG ; Li YUAN ; Xiu-Fang YANG ; Wei LI ; Ni-Yang LIN ; Qian CHEN ; Chang-Shun XIA ; Xin-Qi ZHONG ; Qi-Liang CUI
Chinese Journal of Contemporary Pediatrics 2024;26(6):611-618
Objective To investigate the risk factors for bronchopulmonary dysplasia(BPD)in twin preterm infants with a gestational age of<34 weeks,and to provide a basis for early identification of BPD in twin preterm infants in clinical practice.Methods A retrospective analysis was performed for the twin preterm infants with a gestational age of<34 weeks who were admitted to 22 hospitals nationwide from January 2018 to December 2020.According to their conditions,they were divided into group A(both twins had BPD),group B(only one twin had BPD),and group C(neither twin had BPD).The risk factors for BPD in twin preterm infants were analyzed.Further analysis was conducted on group B to investigate the postnatal risk factors for BPD within twins.Results A total of 904 pairs of twins with a gestational age of<34 weeks were included in this study.The multivariate logistic regression analysis showed that compared with group C,birth weight discordance of>25%between the twins was an independent risk factor for BPD in one of the twins(OR=3.370,95%CI:1.500-7.568,P<0.05),and high gestational age at birth was a protective factor against BPD(P<0.05).The conditional logistic regression analysis of group B showed that small-for-gestational-age(SGA)birth was an independent risk factor for BPD in individual twins(OR=5.017,95%CI:1.040-24.190,P<0.05).Conclusions The development of BPD in twin preterm infants is associated with gestational age,birth weight discordance between the twins,and SGA birth.
10.Design and application of portable intelligent cleaner for medical lumen instruments
Mei-Hua YU ; Chen-Yang ZHAN ; Li-Yun HE ; Cai-Hong LIU ; Bao-Xiu HUANG ; Yan-Min YAN ; Xiang-Dong HUANG
Chinese Medical Equipment Journal 2024;45(10):114-117
Objective To design a portable intelligent cleaner for medical lumen instruments to enhance cleaning efficiency.Methods The portable intelligent cleaner had a box-body shape and a shell made of 304 stainless steel,which was composed of a circuit control board,a micro pump,lithium batteries,a charging interface,a rinse tube and connectors.The circuit control board used a STM32G030C8T6 integraged circuit,which was equipped with a countdown digital tube to display the time left for cleaning;the micro pump and lithium batteries were placed at the inner wall of the box bottom,the charging interface and water inlet/outlet inteface were put on the outside of the front wall of the box bottom,the water inlet/outlet interface was connected with a silicon rinse tube linked to an adapter at its distal end,and the adapters with different calibers were compatible with sizes of medical lumen instruments.Totally 9 672 pieces of lumen instruments received by some hospital's disinfection supply center from May to October 2021 were divided into 2 groups with the convenience sampling method,with 4 836 pieces in each group.The odd-numbered instruments were enrolled into a control group and cleaned with an ultrasonic cleaner and a lumen brush,and the even-numbered instruments were included into an experimental group and cleaned conventionally after pretreatment by the intelligent cleaner.The two groups were compared in terms of eaning efficiency and satisfaction.Results Testing by visual inspection,magnifying glass with light source and white stripe method showed that the experimental group behaved better than the control group in the cleaning qualification rate,whose satisfaction rate(100%)was also higher than that of the control group(86.53%),with all the differences being statistically significant(P<0.05).Conclusion The portable cleaner with easy operation enhances the cleaning quality and efficiency for medical lumen instruments.[Chinese Medical Equipment Journal,2024,45(10):114-117]

Result Analysis
Print
Save
E-mail