1.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
2.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
3.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
4.Ras Guanine Nucleotide-Releasing Protein-4 Inhibits Erythropoietin Production in Diabetic Mice with Kidney Disease by Degrading HIF2A
Junmei WANG ; Shuai HUANG ; Li ZHANG ; Yixian HE ; Xian SHAO ; A-Shan-Jiang A-NI-WAN ; Yan KONG ; Xuying MENG ; Pei YU ; Saijun ZHOU
Diabetes & Metabolism Journal 2025;49(3):421-435
Background:
In acute and chronic renal inflammatory diseases, the activation of inflammatory cells is involved in the defect of erythropoietin (EPO) production. Ras guanine nucleotide-releasing protein-4 (RasGRP4) promotes renal inflammatory injury in type 2 diabetes mellitus (T2DM). Our study aimed to investigate the role and mechanism of RasGRP4 in the production of renal EPO in diabetes.
Methods:
The degree of tissue injury was observed by pathological staining. Inflammatory cell infiltration was analyzed by immunohistochemical staining. Serum EPO levels were detected by enzyme-linked immunosorbent assay, and EPO production and renal interstitial fibrosis were analyzed by immunofluorescence. Quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of key inflammatory factors and the activation of signaling pathways. In vitro, the interaction between peripheral blood mononuclear cells (PBMCs) and C3H10T1/2 cells was investigated via cell coculture experiments.
Results:
RasGRP4 decreased the expression of hypoxia-inducible factor 2-alpha (HIF2A) via the ubiquitination–proteasome degradation pathway and promoted myofibroblastic transformation by activating critical inflammatory pathways, consequently reducing the production of EPO in T2DM mice.
Conclusion
RasGRP4 participates in the production of renal EPO in diabetic mice by affecting the secretion of proinflammatory cytokines in PBMCs, degrading HIF2A, and promoting the myofibroblastic transformation of C3H10T1/2 cells.
5.Medication rules of Astragali Radix in ancient Chinese medical books based on "disease-medicine-dose" pattern.
Jia-Lei CAO ; Lü-Yuan LIANG ; Yi-Hang LIU ; Zi-Ming XU ; Xuan WANG ; Wen-Xi WEI ; He-Jia WAN ; Xing-Hang LYU ; Wei-Xiao LI ; Yu-Xin ZHANG ; Bing-Qi WEI ; Xian-Qing REN
China Journal of Chinese Materia Medica 2025;50(3):798-811
This study employed the "disease-medicine-dose" pattern to mine the medication rules of traditional Chinese medicine(TCM) prescriptions containing Astragali Radix in ancient Chinese medical books, aiming to provide a scientific basis for the clinical application of Astragali Radix and the development of new medicines. The TCM prescriptions containing Astragali Radix were retrieved from databases such as Chinese Medical Dictionary and imported into Excel 2020 to construct the prescription library. Statical analysis were performed for the prescriptions regarding the indications, syndromes, medicine use frequency, herb effects, nature and taste, meridian tropism, dosage forms, and dose. SPSS statistics 26.0 and IBM SPSS Modeler 18.0 were used for association rules analysis and cluster analysis. A total of 2 297 prescriptions containing Astragali Radix were collected, involving 233 indications, among which sore and ulcer, consumptive disease, sweating disorder, and apoplexy had high frequency(>25), and their syndromes were mainly Qi and blood deficiency, Qi and blood deficiency, Yin and Yang deficiency, and Qi deficiency and collateral obstruction, respectively. In the prescriptions, 98 medicines were used with the frequency >25 and they mainly included Qi-tonifying medicines and blood-tonifying medicines. Glycyrrhizae Radix et Rhizoma, Angelicae Sinensis Radix, Ginseng Radix et Rhizoma, Atractylodis Macrocephalae Rhizoma, and Citri Reticulatae Pericarpium were frequently used. The medicines with high frequency mainly have warm or cold nature, and sweet, pungent, or bitter taste, with tropism to spleen, lung, heart, liver, and kidney meridians. In the treatment of sore and ulcer, Astragali Radix was mainly used with the dose of 3.73 g and combined with Glycyrrhizae Radix et Rhizoma to promote granulation and heal up sores. In the treatment of consumptive disease, Astragali Radix was mainly used with the dose of 37.30 g and combined with Ginseng Radix et Rhizoma to tonify deficiency and replenish Qi. In the treatment of sweating disorder, Astragali Radix was mainly used with the dose of 3.73 g and combined with Glycyrrhizae Radix et Rhizoma to consolidate exterior and stop sweating. In the treatment of apoplexy, Astragali Radix was mainly used with the dose of 7.46 g and combined with Glycyrrhizae Radix et Rhizoma to dispell wind and stop convulsions. Astragali Radix can be used in the treatment of multiple system diseases, with the effects of tonifying Qi and ascending Yang, consolidating exterior and stopping sweating, and expressing toxin and promoting granulation. According to the manifestations of different diseases, when combined with other medicines, Astragali Radix was endowed with the effects of promoting granulation and healing up sores, tonifying deficiency and Qi, consolidating exterior and stopping sweating, and dispelling wind and replenishing Qi. The findings provide a theoretical reference and a scientific basis for the clinical application of Astragali Radix and the development of new medicines.
Drugs, Chinese Herbal/history*
;
Humans
;
Medicine, Chinese Traditional/history*
;
History, Ancient
;
Astragalus Plant/chemistry*
;
China
;
Astragalus propinquus
6.Stir-fried Semen Armeniacae Amarum Suppresses Aristolochic Acid I-Induced Nephrotoxicity and DNA Adducts.
Cheng-Xian LI ; Xiao-He XIAO ; Xin-Yu LI ; Da-Ke XIAO ; Yin-Kang WANG ; Xian-Ling WANG ; Ping ZHANG ; Yu-Rong LI ; Ming NIU ; Zhao-Fang BAI
Chinese journal of integrative medicine 2025;31(2):142-152
OBJECTIVE:
To investigate the protective effects of stir-fried Semen Armeniacae Amarum (SAA) against aristolochic acid I (AAI)-induced nephrotoxicity and DNA adducts and elucidate the underlying mechanism involved for ensuring the safe use of Asari Radix et Rhizoma.
METHODS:
In vitro, HEK293T cells overexpressing Flag-tagged multidrug resistance-associated protein 3 (MRP3) were constructed by Lentiviral transduction, and inhibitory effect of top 10 common pairs of medicinal herbs with Asari Radix et Rhizoma in clinic on MRP3 activity was verified using a self-constructed fluorescence screening system. The mRNA, protein expressions, and enzyme activity levels of NAD(P)H quinone dehydrogenase 1 (NQO1) and cytochrome P450 1A2 (CYP1A2) were measured in differentiated HepaRG cells. Hepatocyte toxicity after inhibition of AAI metabolite transport was detected using cell counting kit-8 assay. In vivo, C57BL/6 mice were randomly divided into 5 groups according to a random number table, including: control (1% sodium bicarbonate), AAI (10 mg/kg), stir-fried SAA (1.75 g/kg) and AAI + stir-fried SAA (1.75 and 8.75 g/kg) groups, 6 mice in each group. After 7 days of continuous gavage administration, liver and kidney damages were assessed, and the protein expressions and enzyme activity of liver metabolic enzymes NQO1 and CYP1A2 were determined simultaneously.
RESULTS:
In vivo, combination of 1.75 g/kg SAA and 10 mg/kg AAI suppressed AAI-induced nephrotoxicity and reduced dA-ALI formation by 26.7%, and these detoxification effects in a dose-dependent manner (P<0.01). Mechanistically, SAA inhibited MRP3 transport in vitro, downregulated NQO1 expression in vivo, increased CYP1A2 expression and enzymatic activity in vitro and in vivo, respectively (P<0.05 or P<0.01). Notably, SAA also reduced AAI-induced hepatotoxicity throughout the detoxification process, as indicated by a 41.3% reduction in the number of liver adducts (P<0.01).
CONCLUSIONS
Stir-fried SAA is a novel drug candidate for the suppression of AAI-induced liver and kidney damages. The protective mechanism may be closely related to the regulation of transporters and metabolic enzymes.
Aristolochic Acids/toxicity*
;
Animals
;
Humans
;
NAD(P)H Dehydrogenase (Quinone)/genetics*
;
HEK293 Cells
;
Kidney/pathology*
;
Cytochrome P-450 CYP1A2/genetics*
;
Mice, Inbred C57BL
;
DNA Adducts/drug effects*
;
Male
;
Kidney Diseases/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Mice
;
Prunus armeniaca
;
Plant Extracts
7.Phenotypic Function of Legionella pneumophila Type I-F CRISPR-Cas.
Ting MO ; Hong Yu REN ; Xian Xian ZHANG ; Yun Wei LU ; Zhong Qiu TENG ; Xue ZHANG ; Lu Peng DAI ; Ling HOU ; Na ZHAO ; Jia HE ; Tian QIN
Biomedical and Environmental Sciences 2025;38(9):1105-1119
OBJECTIVE:
CRISPR-Cas protects bacteria from exogenous DNA invasion and is associated with bacterial biofilm formation and pathogenicity.
METHODS:
We analyzed the type I-F CRISPR-Cas system of Legionella pneumophila WX48, including Cas1, Cas2-Cas3, Csy1, Csy2, Csy3, and Cas6f, along with downstream CRISPR arrays. We explored the effects of the CRISPR-Cas system on the in vitro growth, biofilm-forming ability, and pathogenicity of L. pneumophila through constructing gene deletion mutants.
RESULTS:
The type I-F CRISPR-Cas system did not affect the in vitro growth of wild-type or mutant strains. The biofilm formation and intracellular proliferation of the mutant strains were weaker than those of the wild type owing to the regulation of type IV pili and Dot/Icm type IV secretion systems. In particular, Cas6f deletion strongly inhibited these processes.
CONCLUSION
The type I-F CRISPR-Cas system may reduce biofilm formation and intracellular proliferation in L. pneumophila.
Legionella pneumophila/pathogenicity*
;
CRISPR-Cas Systems
;
Biofilms/growth & development*
;
Phenotype
;
Bacterial Proteins/metabolism*
;
Gene Deletion
8.Blood security and management of transfusion-dependent thalassaemia(TDT)patients in Nanning:analysis of"col-lection-based-supply"blood management mode
Mei YU ; Yang CHEN ; Xian LI ; Qiuhong MO ; Linbin HUANG ; Xipeng YAN ; Baoren HE ; Bin LI ; Limin CHEN
Chinese Journal of Blood Transfusion 2024;37(5):567-574
Objective To retrospectively analyze the blood use of transfusion-dependent thalassemia(TDT)patients in 9 designated transfusion medical institutions from 2018 to 2023 in Nanning,and to evaluate the effect of"three designated"blood transfusion mode(hereby means TDT patients undergoing blood transfusion in designated transfusion medical institu-tions regularly)and"collection-based-supply"blood management mode on blood security of TDT patients.Methods The"three designated"blood transfusion mode was implemented to ensure that TDT patients registered in the local household registration(referred to as the"register")obtain the rights and interests of outpatient transfusion and blood security of des-ignated medical institutions.The"collection-based-supply"blood management mode was implemented to assess the blood needs of"register"TDT patients and meet their needs to the maximum extent according to the blood inventory(collection).Results From 2018 to 2023,the total blood supply of"register"TDT patients was 10.37%of the total red blood supply of all medical institutions(138 509.5 U/1 335 788.0 U),with the highest proportion of type O blood as 46.34%(64 181.0 U/138 509.5 U)and the lowest proportion of type AB blood as 3.85%(5 331.0 U/138 509.5 U).In 2018,9 transfusion medical institutions were designated for TDT patients.There were a total of 766 TDT patients in the register,with the per ca-pita annual blood transfusion volume increased from20.28 U(15 531.0 U/766 patients)in2018 to36.01 U(27 586.0 U/766 patients)in 2023,maintaining a positive growth every year(30.26%,4.94%,11.71%,8.61%,4.94%and 7.10%).Conclusion The"three designated"blood transfusion mode and the"collection-based-supply"blood management mode can effectively guarantee the blood supply of TDT patients.
9.Promotion effect of FOXCUT as a microRNA sponge for miR-24-3p on progression in triple-negative breast cancer through the p38 MAPK signaling pathway
Xiafei YU ; Fangze QIAN ; Xiaoqiang ZHANG ; Yanhui ZHU ; Gao HE ; Junzhe YANG ; Xian WU ; Yi ZHOU ; Li SHEN ; Xiaoyue SHI ; Hongfei ZHANG ; Xiao’an LIU
Chinese Medical Journal 2024;137(1):105-114
Background::Triple-negative breast cancer (TNBC) is a type of highly invasive breast cancer with a poor prognosis. According to new research, long noncoding RNAs (lncRNAs) play a significant role in the progression of cancer. Although the role of lncRNAs in breast cancer has been well reported, few studies have focused on TNBC. This study aimed to explore the biological function and clinical significance of forkhead box C1 promoter upstream transcript (FOXCUT) in triple-negative breast cancer.Methods::Based on a bioinformatic analysis of the cancer genome atlas (TCGA) database, we detected that the lncRNA FOXCUT was overexpressed in TNBC tissues, which was further validated in an external cohort of tissues from the General Surgery Department of the First Affiliated Hospital of Nanjing Medical University. The functions of FOXCUT in proliferation, migration, and invasion were detected in vitro or in vivo. Luciferase assays and RNA immunoprecipitation (RIP) were performed to reveal that FOXCUT acted as a competitive endogenous RNA (ceRNA) for the microRNA miR-24-3p and consequently inhibited the degradation of p38. Results::lncRNA FOXCUT was markedly highly expressed in breast cancer, which was associated with poor prognosis in some cases. Knockdown of FOXCUT significantly inhibited cancer growth and metastasis in vitro or in vivo. Mechanistically, FOXCUT competitively bounded to miR-24-3p to prevent the degradation of p38, which might act as an oncogene in breast cancer. Conclusion::Collectively, this research revealed a novel FOXCUT/miR-24-3p/p38 axis that affected breast cancer progression and suggested that the lncRNA FOXCUT could be a diagnostic marker and therapeutic target for breast cancer.
10.Dosimetric study of two-arc and dual-arc techniques in VMAT program for lower mid-thoracic esophageal cancer
Yong-Fu FENG ; Yu-Song LONG ; Jun-Wen TAN ; Xian-Tao HE ; Gang LI ; Zhan-Yu WANG
Chinese Medical Equipment Journal 2024;45(1):62-66
Objective To compare the effects of two arc(TA)and dual arc(DA)techniques on the dose distribution to the planning target volume(PTV)and organs at risk(OAR)in volumetric modulated arc therapy(VMAT)for lower mid-thoracic esophageal cancer.Methods Ten patients with lower mid-thoracic esophageal cancer who received radiation therapy at some hospital from July 2020 to June 2022 were selected retrospectively.A TA radiation therapy plan and a DA radiation therapy plan were developed for each patient using the Ray Arc module of RayStation 4.7.5.4 planning system,and the two kinds of radiation plans were compared in terms of dosimetric parameters including D2,D5,D50,D95,D98,homogeneity index(HI),conformity index(CI),beam-on time and total monitor unit for PTV and lung V5,V10,V20,V30 and Dmean and heartV30,V40 and Dmean and spine cord Dmax for OAR.SPSS 22.0 was used for statistical analysis.Results TA and DA radiation therapy plans had no significant differences in PTV CI,HI,D2,D5,D50,D95 and beam-on time(P>0.05),and DA plan had D98 and total monitor unit higher obviously than those of TA plan(P<0.05).In terms of OARs protection,DA plan had heart V30,V40 and Dmean slightly lower than those of TA plan with non-significantly differences(P>0.05),while lung V5,V30 and Dmean and spine cordDmax significantly lower(P<0.05).Conclusion DA technique gains advantages over TA technique in PTV dose distribution and dose to OAR,and the involvement of DA technique in preparing the VMAT plan for esophageal cancer contributes to enhancing the treatment efficacy.[Chinese Medical Equipment Journal,2024,45(1):62-66]

Result Analysis
Print
Save
E-mail